

openwisp-radius

[image: CI build status]
 [https://travis-ci.org/openwisp/openwisp-radius][image: Test Coverage]
 [https://coveralls.io/github/openwisp/openwisp-radius?branch=master][image: Dependency monitoring]
 [https://libraries.io/github/openwisp/openwisp-radius#repository_dependencies][image: Chat]
 [https://gitter.im/openwisp/general][image: Pypi Version]
 [http://badge.fury.io/py/openwisp-radius][image: Downloads]
 [https://pepy.tech/project/openwisp-radius][image: code style: black]
 [https://pypi.org/project/black/]OpenWISP-RADIUS provides an admin interface to a
freeradius [https://freeradius.org/] database and offers features
that are common in WiFi and ISP deployments.

Need a quick overview? Try the OpenWISP Demo [https://openwisp.org/demo.html].

Note

If you’re building a public wifi service, we suggest
to take a look at openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which is built to work with openwisp-radius.

[image: _images/openwisp-logo-black.svg]
 [http://openwisp.org]

	Setup
	Try the demo

	Deploy it in production

	Create a virtual environment

	Install required system packages

	Install stable version from pypi

	Install development version

	Setup (integrate in an existing django project)

	Migrating an existing freeradius database

	Automated periodic tasks

	Installing for development

	Celery Usage

	Troubleshooting

	Freeradius Setup for Captive Portal authentication
	How to install freeradius 3

	Configuring Freeradius 3

	Using Radius Checks for Authorization Information

	Debugging

	Customizing your configuration

	Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication
	Prerequisites

	Freeradius configuration

	Repeating the steps for more organizations

	Final steps

	Implementing other EAP scenarios

	Available settings
	Admin related settings

	Model related settings

	API and user token related settings

	Email related settings

	Counter related settings

	Social Login related settings

	SAML related settings

	SMS token related settings

	Management commands
	delete_old_radacct

	delete_old_postauth

	cleanup_stale_radacct

	deactivate_expired_users

	delete_old_radiusbatch_users

	delete_unverified_users

	upgrade_from_django_freeradius

	convert_called_station_id

	Importing users
	CSV Format

	Using the admin interface

	Management command: batch_add_users

	REST API: Batch user creation

	Generating users
	Using the admin interface

	Management command: prefix_add_users

	REST API: Batch user creation

	Enforcing session limits
	Default groups

	How limits are enforced: counters

	Registration of new users

	Social Login
	Setup

	Configure the social account application

	Captive page button example

	Settings

	Single Sign-On (SAML)
	Setup

	Configure the djangosaml2 settings

	Captive page button example

	Logout

	Settings

	FAQs

	Change of Authorization (CoA)

	API Documentation
	Live documentation

	Browsable web interface

	FreeRADIUS API Endpoints

	User API Endpoints

	Signals
	radius_accounting_success

	Extending openwisp-radius
	1. Initialize your custom module

	2. Install openwisp-radius

	3. Add EXTENDED_APPS

	4. Add openwisp_utils.staticfiles.DependencyFinder

	5. Add openwisp_utils.loaders.DependencyLoader

	6. Inherit the AppConfig class

	7. Create your custom models

	8. Add swapper configurations

	9. Create database migrations

	10. Create the admin

	11. Setup Freeradius API Allowed Hosts

	12. Setup Periodic tasks

	13. Create root URL configuration

	14. Import the automated tests

	Other base classes that can be inherited and extended

	Captive portal mock views
	Captive Portal Login Mock View

	Captive Portal Logout Mock View

	Support

	Contributing
	Setup

	Ensure test coverage does not decrease

	Follow style conventions

	Update the documentation

	Send pull request

	Motivations and Goals
	Motivations

	Project goals

	Change log
	Version 1.1.0 [Unreleased]

	Version 1.0.2 [2022-12-05]

	Version 1.0.1 [2022-05-10]

	Version 1.0.0 [2022-04-18]

	Version 0.2.1 [2020-12-14]

	Version 0.2.0 [2020-12-11]

	Version 0.1.0 [2020-09-10]

Setup

Try the demo

Need a quick overview? Try the OpenWISP Demo [https://openwisp.org/demo.html].

Deploy it in production

An automated installer is available at
ansible-openwisp2 [https://github.com/openwisp/ansible-openwisp2#enabling-the-radius-module].

Create a virtual environment

Please use a python virtual environment [https://docs.python.org/3/library/venv.html].
It keeps everybody on the same page, helps reproducing bugs and resolving problems.

We highly suggest to use virtualenvwrapper, please refer to the official virtualenvwrapper installation page [https://virtualenvwrapper.readthedocs.io/en/latest/install.html] and come back here when ready to proceed.

create virtualenv
mkvirtualenv radius

Note

If you encounter an error like Python could not import the module virtualenvwrapper,
add VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 and run source virtualenvwrapper.sh again :)

Install required system packages

Install packages required by Weasyprint for your OS:

	Linux [https://weasyprint.readthedocs.io/en/stable/install.html#linux]

	MacOS [https://weasyprint.readthedocs.io/en/stable/install.html#macos]

	Windows [https://weasyprint.readthedocs.io/en/stable/install.html#windows]

Install stable version from pypi

Install from pypi:

REQUIRED: update base python packages
pip install -U pip setuptools wheel
install openwisp-radius
pip install openwisp-radius

Install development version

Install tarball:

REQUIRED: update base python packages
pip install -U pip setuptools wheel
install openwisp-radius
pip install https://github.com/openwisp/openwisp-radius/tarball/master

Alternatively you can install via pip using git:

REQUIRED: update base python packages
pip install -U pip setuptools wheel
install openwisp-radius
pip install -e git+git://github.com/openwisp/openwisp-radius#egg=openwisp-radius

If you want to contribute, install your cloned fork:

REQUIRED: update base python packages
pip install -U pip setuptools wheel
install your forked openwisp-radius
git clone git@github.com:<your_fork>/openwisp-radius.git
cd openwisp-radius
pip install -e .

Setup (integrate in an existing django project)

The settings.py file of your project should have at least the following
modules listed INSTALLED_APPS:

INSTALLED_APPS = [
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django.contrib.humanize',
 # openwisp admin theme
 'openwisp_utils.admin_theme',
 # all-auth
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 # admin
 'django.contrib.admin',
 # rest framework
 'rest_framework',
 'django_filters',
 # registration
 'rest_framework.authtoken',
 'dj_rest_auth',
 'dj_rest_auth.registration',
 # openwisp radius
 'openwisp_radius',
 'openwisp_users',
 'private_storage',
 'drf_yasg',
]

These modules are optional, add them only if you need the
social login feature:

INSTALLED_APPS += [
 # social login
 'allauth.socialaccount',
 'allauth.socialaccount.providers.facebook',
 'allauth.socialaccount.providers.google',
]

Add media locations in settings.py:

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
PRIVATE_STORAGE_ROOT = os.path.join(MEDIA_ROOT, 'private')

Also, add AUTH_USER_MODEL, AUTHENTICATION_BACKENDS and SITE_ID to
your settings.py:

AUTH_USER_MODEL = 'openwisp_users.User'
SITE_ID = 1
AUTHENTICATION_BACKENDS = (
 'openwisp_users.backends.UsersAuthenticationBackend',
)

Add allowed freeradius hosts in settings.py:

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS = ['127.0.0.1']

Note

Read more about freeradius allowed hosts in settings page.

Add the URLs to your main urls.py:

from openwisp_radius.urls import get_urls

urlpatterns = [
 # ... other urls in your project ...

 # django admin interface urls
 path('admin/', admin.site.urls),
 # openwisp-radius urls
 path('api/v1/', include('openwisp_utils.api.urls')),
 path('api/v1/', include('openwisp_users.api.urls')),
 path('accounts/', include('openwisp_users.accounts.urls')),
 path('', include('openwisp_radius.urls'))
]

Then run:

./manage.py migrate

Migrating an existing freeradius database

If you already have a freeradius 3 database with the default schema, you should
be able to use it with openwisp-radius (and extended apps) easily:

	first of all, back up your existing database;

	configure django to connect to your existing database;

	fake the first migration (which only replicates the default freeradius schema)
and then launch the rest of migrations normally, see the examples below to
see how to do this.

./manage.py migrate --fake openwisp-radius 0001_initial_freeradius
./manage.py migrate

Automated periodic tasks

Some periodic commands are required in production environments to enable certain
features and facilitate database cleanup.
There are two ways to automate these tasks:

1. Celery-beat (Recommended Method)

	You need to create a celery configuration file as it’s created in example file [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/celery.py].

	Add celery to __init__.py of your project:

from .celery import app as celery_app

__all__ = ['celery_app']

3. In the settings.py, configure the CELERY_BEAT_SCHEDULE [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/settings.py#L141]. Some celery tasks take an argument, for instance
365 is given here for delete_old_radacct in the example settings.
These arguments are passed to their respective management commands. More information about these parameters can be
found at the management commands page.

Note

Celery tasks do not start with django server and need to be
started seperately, please read about running celery and
celery-beat tasks.

2. Crontab (Legacy Method)

Edit the crontab with:

crontab -e

Add and modify the following lines accordingly:

This command deletes RADIUS accounting sessions older than 365 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_radacct 365

This command deletes RADIUS post-auth logs older than 365 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_postauth 365

This command closes stale RADIUS sessions that have remained open for 15 days
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py cleanup_stale_radacct 15

This command deactivates expired user accounts which were created temporarily
(eg: for en event) and have an expiration date set.
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py deactivate_expired_users

This command deletes users that have expired (and should have
been deactivated by deactivate_expired_users) for more than
18 months (which is the default duration)
30 04 * * * <virtualenv_path>/bin/python <full/path/to>/manage.py delete_old_radiusbatch_users

Be sure to replace <virtualenv_path> with the absolute path to the Python
virtual environment.

Also, change <full/path/to> to the directory where manage.py is.

To get the absolute path to manage.py when openwisp-radius is
installed for development, navigate to the base directory of
the cloned fork. Then, run:

cd tests/
pwd

Note

More information can be found at the
management commands page.

Installing for development

Install python3-dev and gcc:

sudo apt install python3-dev gcc

Install sqlite:

sudo apt install sqlite3 libsqlite3-dev libpq-dev

Install mysqlclient:

sudo apt install libmysqlclient-dev libssl-dev

Note

If you are on Debian 10 or 9 you may need to install default-libmysqlclient-dev instead

Install xmlsec1:

sudo apt install xmlsec1

Install your forked repo:

git clone git://github.com/<your_username>/openwisp-radius
cd openwisp-radius/
pip install -e .[saml,openvpn_status]

Install test requirements:

pip install -r requirements-test.txt

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py

Celery Usage

To run celery, you need to start redis-server. You can install redis on your machine [https://redis.io/download] or install docker [https://docs.docker.com/get-docker/]
and run redis inside docker container:

docker run -p 6379:6379 --name openwisp-redis -d redis:alpine

Run celery (it is recommended to use a tool like supervisord in production):

Optionally, use ``--detach`` argument to avoid using multiple terminals
celery -A openwisp2 worker -l info
celery -A openwisp2 beat -l info

Troubleshooting

If you encounter any issue during installation, run:

pip install -e .[saml] -r requirements-test.txt

instead of pip install -r requirements-test.txt

Freeradius Setup for Captive Portal authentication

This guide explains how to install and configure
freeradius 3 [https://freeradius.org]
in order to make it work with
OpenWISP RADIUS [https://github.com/openwisp/openwisp-radius/]
for Captive Portal authentication.

The guide is written for debian based systems, other linux
distributions can work as well but the name of packages and
files may be different.

Widely used solutions used with OpenWISP RADIUS are PfSense and
Coova-Chilli, but other solutions can be used as well.

Note

Before users can authenticate through a captive portal,
they will most likely need to sign up through a web page,
or alternatively, they will need to perform social login or
some other kind of Single Sign On (SSO).

The openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages] web app
is an open source solution which integrates with
OpenWISP RADIUS to provide features like self user registration,
social login, SSO/SAML login, SMS verification,
simple username & password login using the
Radius User Token method.

For more information see: openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages].

How to install freeradius 3

First of all, become root:

sudo -s

In order to install a recent version of FreeRADIUS, we recommend
using the freeradius packages provided by NetworkRADIUS [https://networkradius.com/packages/].

After having updated the APT sources list to pull the NetworkRADIUS packages,
let’s proceed to update the list of available packages:

apt update

These packages are always needed:

apt install freeradius freeradius-rest

If you use MySQL:

apt install freeradius-mysql

If you use PostgreSQL:

apt install freeradius-postgresql

Warning

You have to install and configure an SQL database like
PostgreSQL, MySQL (SQLite can also work, but we won’t treat it here)
and make sure both OpenWISP RADIUS and Freeradius point to it.

The steps outlined above may not be sufficient to get the DB
of your choice to run, please consult the documentation of your
database of choice for more information on how to get it to run properly.

In the rest of this document we will mention PostgreSQL often because
that is the database generally preferred by the Django community.

Configuring Freeradius 3

For a complete reference on how to configure freeradius please read the
Freeradius wiki, configuration files [https://wiki.freeradius.org/config/Configuration-files]
and their configuration tutorial [https://wiki.freeradius.org/guide/HOWTO].

Note

The path to freeradius configuration could be different on your system.
This article use the /etc/freeradius/ directory that ships with recent
debian distributions and its derivatives

Refer to the mods-available documentation [https://networkradius.com/doc/3.0.10/raddb/mods-available/home.html]
for the available configuration values.

Enable the configured modules

First of all enable the rest and optionally the sql module:

ln -s /etc/freeradius/mods-available/rest /etc/freeradius/mods-enabled/rest
optional
ln -s /etc/freeradius/mods-available/sql /etc/freeradius/mods-enabled/sql

Configure the REST module

Configure the rest module by editing the file /etc/freeradius/mods-enabled/rest,
substituting <url> with your django project’s URL, (for example, if you are
testing a development environment, the URL could be http://127.0.0.1:8000,
otherwise in production could be something like https://openwisp2.mydomain.org)-

Warning

Remember you need to add your freeradius server IP address in openwisp freeradius
allowed hosts settings.
If the freeradius server IP is not in allowed hosts, all requests to openwisp
radius API will return 403.

Refer to the rest module documentation [https://networkradius.com/doc/3.0.10/raddb/mods-available/rest.html]
for the available configuration values.

/etc/freeradius/mods-enabled/rest

connect_uri = "<url>"

authorize {
 uri = "${..connect_uri}/api/v1/freeradius/authorize/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}"}'
 tls = ${..tls}
}

this section can be left empty
authenticate {}

post-auth {
 uri = "${..connect_uri}/api/v1/freeradius/postauth/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}", "reply": "%{reply:Packet-Type}", "called_station_id": "%{Called-Station-ID}", "calling_station_id": "%{Calling-Station-ID}"}'
 tls = ${..tls}
}

accounting {
 uri = "${..connect_uri}/api/v1/freeradius/accounting/"
 method = 'post'
 body = 'json'
 data = '{"status_type": "%{Acct-Status-Type}", "session_id": "%{Acct-Session-Id}", "unique_id": "%{Acct-Unique-Session-Id}", "username": "%{User-Name}", "realm": "%{Realm}", "nas_ip_address": "%{NAS-IP-Address}", "nas_port_id": "%{NAS-Port}", "nas_port_type": "%{NAS-Port-Type}", "session_time": "%{Acct-Session-Time}", "authentication": "%{Acct-Authentic}", "input_octets": "%{Acct-Input-Octets}", "output_octets": "%{Acct-Output-Octets}", "called_station_id": "%{Called-Station-Id}", "calling_station_id": "%{Calling-Station-Id}", "terminate_cause": "%{Acct-Terminate-Cause}", "service_type": "%{Service-Type}", "framed_protocol": "%{Framed-Protocol}", "framed_ip_address": "%{Framed-IP-Address}"}'
 tls = ${..tls}
}

Configure the SQL module

Note

The sql module is not extremely needed but we treat it here since
it can be useful to implement custom behavior, moreover we treat it
in this document also to show that OpenWISP RADIUS can integrate itself
with other widely used FreeRADIUS modules.

Once you have configured properly an SQL server, e.g. PostgreSQL:, and you can
connect with a username and password edit the file /etc/freeradius/mods-available/sql
to configure Freeradius to use the relational database.

Change the configuration for driver, dialect, server, port,
login, password, radius_db as you need to fit your SQL server configuration.

Refer to the
sql module documentation [https://networkradius.com/doc/3.0.10/raddb/mods-available/sql.html]
for the available configuration values.

Example configuration using the PostgreSQL database:

/etc/freeradius/mods-available/sql

driver = "rlm_sql_postgresql"
dialect = "postgresql"

Connection info:
server = "localhost"
port = 5432
login = "<user>"
password = "<password>"
radius_db = "radius"

Configure the site

This section explains how to configure the FreeRADIUS site.

Please refer to FreeRADIUS API Authentication to understand the
different possibilities with which FreeRADIUS can authenticate requests
going to OpenWISP RADIUS so that OpenWISP RADIUS knows to which
organization each request belongs.

If you are not using the method described in Radius User Token,
you have to do the following:

	create one FreeRADIUS site for each organization

	uncomment the line which starts with # api_token_header

	substitute the occurrences of <org_uuid> and
<org_radius_api_token> with the UUID & RADIUS API token of
each organization, refer to the section
Organization UUID & RADIUS API Token for finding these values.

If you are deploying a captive portal setup and can use
the RADIUS User Token method, you can get away with having
only one freeradius site for all the organizations and can simply copy
the configuration shown below.

/etc/freeradius/sites-enabled/default
Remove `#` symbol from the line to uncomment it

server default {
 # if you are not using Radius Token authentication method, please uncomment
 # and set the values for <org_uuid> & <org_radius_api_token>
 # api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }

 # this section can be left empty
 authenticate {}

 post-auth {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 Post-Auth-Type REJECT {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${....api_token_header}" }
 rest
 }
 }

 accounting {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }
}

Please also ensure that acct_unique is present in the pre-accounting section:

preacct {
 # ...
 acct_unique
 # ...
}

Restart freeradius to make the configuration effective

Restart freeradius to load the new configuration:

service freeradius restart
alternatively if you are using systemd
systemctl restart freeradius

In case of errors you can run freeradius in debug mode [https://wiki.freeradius.org/guide/radiusd-X] by running
freeradius -X in order to find out the reason of the failure.

A common problem, especially during development and testing, is that the
openwisp-radius application may not be running, in that case you can find
out how to run the django development server in the
Install for development section.

Also make sure that this server runs on the port specified in
/etc/freeradius/mods-enabled/rest.

You may also want to take a look at the Freeradius documentation [https://freeradius.org/documentation/] for further information that is freeradius specific.

Reconfigure the development environment using PostgreSQL

You’ll have to reconfigure the development environment as well before being able
to use openwisp-radius for managing the freeradius databases.

If you have installed for development, create a file tests/local_settings.py
and add the following code to configure the database:

openwisp-radius/tests/local_settings.py
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': '<db_name>',
 'USER': '<db_user>',
 'PASSWORD': '<db_password>',
 'HOST': '127.0.0.1',
 'PORT': '5432'
 },
 }

Make sure the database by the name <db_name> is created and also the
role <db_user> with <db_password> as password.

Using Radius Checks for Authorization Information

Traditionally, when using an SQL backend with Freeradius,
user authorization information such as User-Name and
“known good” [https://freeradius.org/radiusd/man/rlm_pap.html]
password can be stored using the radcheck
table provided by Freeradius’ default SQL schema.

OpenWISP RADIUS instead uses the FreeRADIUS
rlm_rest [https://networkradius.com/doc/current/raddb/mods-available/rest.html]
module in order to take advantage of the built in user management and
authentication capabilities of Django
(for more information about these topics see Configure the REST module
and User authentication in Django [https://docs.djangoproject.com/en/dev/topics/auth/]).

When migrating from existing FreeRADIUS deployments or in cases where it
is preferred to use the FreeRADIUS radcheck table for storing user
credentials it is possible to utilize rlm_sql [https://wiki.freeradius.org/modules/Rlm_sql]
in parallel with (or instead of) rlm_rest [https://networkradius.com/doc/current/raddb/mods-available/rest.html]
for authorization.

Note

Bypassing the REST API of openwisp-radius means that you
will have to manually create the radius check entries for each user
you want to authenticate with FreeRADIUS.

Configuration

To configure support for accessing user credentials with Radius Checks ensure
the authorize section of your site as follows contains the sql module:

/etc/freeradius/sites-available/default

authorize {
 # ...
 sql # <-- the sql module
 # ...
}

Debugging

In this section we will explain how to debug your freeradius instance.

Start freeradius in debug mode

When debugging we suggest you to open up a dedicated terminal window to run freeradius in debug mode:

we need to stop the main freeradius process first
service freeradius stop
alternatively if you are using systemd
systemctl stop freeradius
launch freeradius in debug mode
freeradius -X

Testing authentication and authorization

You can do this with radtest:

radtest <username> <password> <host> 10 <secret>
radtest admin admin localhost 10 testing123

A successful authentication will return similar output:

Sent Access-Request Id 215 from 0.0.0.0:34869 to 127.0.0.1:1812 length 75
 User-Name = "admin"
 User-Password = "admin"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "admin"
Received Access-Accept Id 215 from 127.0.0.1:1812 to 0.0.0.0:0 length 20

While an unsuccessful one will look like the following:

Sent Access-Request Id 85 from 0.0.0.0:51665 to 127.0.0.1:1812 length 73
 User-Name = "foo"
 User-Password = "bar"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "bar"
Received Access-Reject Id 85 from 127.0.0.1:1812 to 0.0.0.0:0 length 20
(0) -: Expected Access-Accept got Access-Reject

Alternatively, you can use radclient which allows more complex tests; in the following
example we show how to test an authentication request which includes Called-Station-ID
and Calling-Station-ID:

user="foo"
pass="bar"
called="00-11-22-33-44-55:localhost"
calling="00:11:22:33:44:55"
request="User-Name=$user,User-Password=$pass,Called-Station-ID=$called,Calling-Station-ID=$calling"
echo $request | radclient localhost auth testing123

Testing accounting

You can do this with radclient, but first of all you will have to create a text file
like the following one:

/tmp/accounting.txt

Acct-Session-Id = "35000006"
User-Name = "jim"
NAS-IP-Address = 172.16.64.91
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Interim-Update
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 172.16.64.25
Acct-Delay-Time = 0
Acct-Session-Time = 261
Acct-Input-Octets = 9900909
Acct-Output-Octets = 10101010101
Called-Station-Id = 00-27-22-F3-FA-F1:hostname
Calling-Station-Id = 5c:7d:c1:72:a7:3b

Then you can call radclient:

radclient -f /tmp/accounting.txt -x 127.0.0.1 acct testing123

You should get the following output:

Sent Accounting-Request Id 83 from 0.0.0.0:51698 to 127.0.0.1:1813 length 154
 Acct-Session-Id = "35000006"
 User-Name = "jim"
 NAS-IP-Address = 172.16.64.91
 NAS-Port = 1
 NAS-Port-Type = Async
 Acct-Status-Type = Interim-Update
 Acct-Authentic = RADIUS
 Service-Type = Login-User
 Login-Service = Telnet
 Login-IP-Host = 172.16.64.25
 Acct-Delay-Time = 0
 Acct-Session-Time = 261
 Acct-Input-Octets = 9900909
 Acct-Output-Octets = 1511075509
 Called-Station-Id = "00-27-22-F3-FA-F1:hostname"
 Calling-Station-Id = "5c:7d:c1:72:a7:3b"
Received Accounting-Response Id 83 from 127.0.0.1:1813 to 0.0.0.0:0 length 20

Customizing your configuration

You can further customize your freeradius configuration and exploit the many features of freeradius but
you will need to test how your configuration plays with openwisp-radius.

Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication

This guide explains how to install and configure
freeradius 3 [https://freeradius.org]
in order to make it work with
OpenWISP RADIUS [https://github.com/openwisp/openwisp-radius/]
for WPA Enterprise EAP-TTLS-PAP authentication.

The setup will allow users to authenticate via WiFi WPA Enterprise networks
using their personal username and password of their django user accounts.
Users can either be created manually via the admin interface,
generated,
imported from CSV,
or can self register through a web page which makes use of the
registration REST API
(like openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages]).

Prerequisites

Execute the steps explained in the following sections
of the freeradius guide for captive portal authentication:

	How to install freeradius 3

	Enable the configured modules

	Configure the REST module

Then proceed with the rest of the document.

Freeradius configuration

Configure the sites

Main sites

In this scenario it is necessary to set up one FreeRADIUS site for each
organization you want to support, each FreeRADIUS instance will therefore
need two dedicated ports, one for authentication and one for accounting
and a related inner tunnel configuration.

Let’s create the site for an hypotethical organization called org-A.

Don’t forget to substitute the occurrences of
<org_uuid> and <org_radius_api_token> with
the UUID & Radius API token of each organization, refer to the section
Organization UUID & RADIUS API Token for finding these values.

/etc/freeradius/sites-enabled/org_a

server org_a {
 listen {
 type = auth
 ipaddr = *
 # ensure each org has its own port
 port = 1812
 # adjust these as needed
 limit {
 max_connections = 16
 lifetime = 0
 idle_timeout = 30
 }
 }

 listen {
 ipaddr = *
 # ensure each org has its own port
 port = 1813
 type = acct
 limit {}
 }

 # IPv6 configuration skipped for brevity
 # consult the freeradius default configuration if you need
 # to add the IPv6 configuration

 # Substitute the following variables with
 # the organization UUID and RADIUS API Token
 api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 eap-org_a {
 ok = return
 }

 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }

 authenticate {
 Auth-Type eap-org_a {
 eap-org_a
 }
 }

 post-auth {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 Post-Auth-Type REJECT {
 update control { &REST-HTTP-Header += "${....api_token_header}" }
 rest
 }
 }

 accounting {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }
}

Please also ensure that acct_unique is present in the pre-accounting section:

preacct {
 # ...
 acct_unique
 # ...
}

Inner tunnels

You will need to set up one inner tunnel for each organization too.

Following the example for a hypotetical organization named org-A:

/etc/freeradius/sites-enabled/inner-tunnel

server inner-tunnel_org_a {
 listen {
 ipaddr = 127.0.0.1
 # each org will need a dedicated port for their inner tunnel
 port = 18120
 type = auth
 }

 api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 filter_username
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 eap-org_a {
 ok = return
 }

 expiration
 logintime

 pap
 }

 authenticate {
 Auth-Type PAP {
 pap
 }

 Auth-Type CHAP {
 chap
 }

 Auth-Type MS-CHAP {
 mschap
 }
 eap-org_a
 }

 session {}

 post-auth {
 }

 pre-proxy {}
 post-proxy {
 eap-org_a
 }
}

Configure the EAP modules

Note

Keep in mind these are basic sample configurations, once you get it
working feel free to tweak it to make it more secure and fully featured.

You will need to set up one EAP module instance for each organization too.

Following the example for a hypotetical organization named org-A:

eap eap-org_a {
 default_eap_type = ttls
 timer_expire = 60
 ignore_unknown_eap_types = no
 cisco_accounting_username_bug = no
 max_sessions = ${max_requests}

 tls-config tls-common {
 # make sure to have a valid SSL certificate for production usage
 private_key_password = whatever
 private_key_file = /etc/ssl/private/ssl-cert-snakeoil.key
 certificate_file = /etc/ssl/certs/ssl-cert-snakeoil.pem
 ca_file = /etc/ssl/certs/ca-certificates.crt
 dh_file = ${certdir}/dh
 ca_path = ${cadir}
 cipher_list = "DEFAULT"
 cipher_server_preference = no
 ecdh_curve = "prime256v1"

 cache {
 enable = no
 }

 ocsp {
 enable = no
 override_cert_url = yes
 url = "http://127.0.0.1/ocsp/"
 }
 }

 ttls {
 tls = tls-common
 default_eap_type = pap
 copy_request_to_tunnel = yes
 use_tunneled_reply = yes
 virtual_server = "inner-tunnel_org_a"
 }
}

Repeating the steps for more organizations

Let’s say you don’t have only the hypotetical org-A in your system
but more organizations, in that case you simply have to repeat
the steps explained in the previous sections, substituting the occurrences
of org-A with the names of the other organizations.

So if you have an organization named ACME Systems, copy the files and
substitute the occurrences org_a with acme_systems.

Final steps

Once the configurations are ready, you should
restart freeradius
and then test/troubleshoot/debug your setup.

Implementing other EAP scenarios

Implementing other setups like EAP-TLS requires additional development
effort.

OpenWISP Controller [https://github.com/openwisp/openwisp-controller]
already supports x509 certificates, so it would be
a matter of integrating the
django-x509 [https://github.com/openwisp/django-x509]
module into OpenWISP RADIUS and then implement mechanisms for the users
to securely download their certificates.

If you’re interested in this feature, let us know via the
support channels.

Available settings

Admin related settings

These settings control details of the administration interface of openwisp-radius.

Note

The values of overridden settings fields do not change even when
the global defaults are changed.

OPENWISP_RADIUS_EDITABLE_ACCOUNTING

Default: False

Whether radacct entries are editable from the django admin or not.

OPENWISP_RADIUS_EDITABLE_POSTAUTH

Default: False

Whether postauth logs are editable from the django admin or not.

OPENWISP_RADIUS_GROUPCHECK_ADMIN

Default: False

Direct editing of group checks items is disabled by default because
these can be edited through inline items in the Radius Group
admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of group checks
you can do so by setting this to True.

OPENWISP_RADIUS_GROUPREPLY_ADMIN

Default: False

Direct editing of group reply items is disabled by default because
these can be edited through inline items in the Radius Group
admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of group replies
you can do so by setting this to True.

OPENWISP_RADIUS_USERGROUP_ADMIN

Default: False

Direct editing of user group items (radusergroup) is disabled by default
because these can be edited through inline items in the User
admin (Users and Organizations > Users).

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable direct editing of user group items
you can do so by setting this to True.

OPENWISP_RADIUS_USER_ADMIN_RADIUSTOKEN_INLINE

Default: False

The functionality of editing a user’s RadiusToken directly
through an inline from the user admin page is disabled by default.

This is done with the aim of simplifying the admin interface and avoid
overwhelming users with too many options.

If for some reason you need to enable editing user’s RadiusToken
from the user admin page, you can do so by setting this to True.

Model related settings

These settings control details of the openwisp-radius model classes.

OPENWISP_RADIUS_DEFAULT_SECRET_FORMAT

Default: NT-Password

The default encryption format for storing radius check values.

OPENWISP_RADIUS_DISABLED_SECRET_FORMATS

Default: []

A list of disabled encryption formats, by default all formats are
enabled in order to keep backward compatibility with legacy systems.

OPENWISP_RADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

Default: 8

The default password length of the auto generated passwords while
batch addition of users from the csv.

OPENWISP_RADIUS_BATCH_DELETE_EXPIRED

Default: 18

It is the number of months after which the expired users are deleted.

OPENWISP_RADIUS_BATCH_PDF_TEMPLATE

It is the template used to generate the pdf when users are being generated using the batch add users feature using the prefix.

The value should be the absolute path to the template of the pdf.

OPENWISP_RADIUS_EXTRA_NAS_TYPES

Default: tuple()

This setting can be used to add custom NAS types that can be used from the
admin interface when managing NAS instances.

For example, you want a custom NAS type called cisco, you would add
the following to your project settings.py:

OPENWISP_RADIUS_EXTRA_NAS_TYPES = (
 ('cisco', 'Cisco Router'),
)

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS

Default: []

List of host IP addresses or subnets allowed to consume the freeradius
API endpoints (Authorize, Accounting and Postauth), i.e the value
of this option should be the IP address of your freeradius
instance. Example: If your freeradius instance is running on
the same host machine as OpenWISP, the value should be 127.0.0.1.
Similarly, if your freeradius instance is on a different host in
the private network, the value should be the private IP of freeradius
host like 192.0.2.50. If your freeradius is on a public network,
please use the public IP of your freeradius instance.

You can use subnets when freeradius is hosted on a variable IP, eg:

	198.168.0.0/24 to allow the entire LAN.

	0.0.0.0/0 to allow any address (useful for development / testing).

This value can be overridden per organization in the organization
change page. You can skip setting this option if you intend to set
it from organization change page for each organization.

[image: Organization change page freeradius settings]
OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS = ['127.0.0.1', '192.0.2.10', '192.168.0.0/24']

If this option and organization change page option are both
empty, then all freeradius API requests for the organization
will return 403.

OPENWISP_RADIUS_COA_ENABLED

Default: False`

If set to True, openwisp-radius will update the NAS with the
user’s current RADIUS attributes whenever the RadiusGroup of
user is changed. This allow enforcing of rate limits on active
RADIUS sessions without requiring users to re-authenticate. For
more details, read the dedicated section for configuring
openwisp-radius and NAS for using CoA.

This can be overridden for each organization separately
via the organization radius settings section of the admin interface.

[image: CoA enabled]

`RADCLIENT_ATTRIBUTE_DICTIONARIES`

	type:

	list

	default:

	[]

List of absolute file paths of additional RADIUS dictionaries used
for RADIUS attribute mapping.

Note

A default dictionary [https://github.com/openwisp/openwisp-radius/blob/master/openwisp_radius/radclient/dictionary]
is shipped with openwisp-radius. Any dictionary added using this setting
will be used alongside the default dictionary.

OPENWISP_RADIUS_MAX_CSV_FILE_SIZE

	type:

	int

	default:

	5 * 1024 * 1024 (5 MB)

This setting can be used to set the maximum size limit for firmware images, eg:

OPENWISP_RADIUS_MAX_CSV_FILE_SIZE = 10 * 1024 * 1024 # 10MB

Note

The numeric value represents the size of files in bytes.
Setting this to None will mean there’s no max size.

OPENWISP_RADIUS_PRIVATE_STORAGE_INSTANCE

	type:

	str

	default:

	openwisp_radius.private_storage.storage.private_file_system_storage

Dotted path to an instance of any one of the storage classes in
private_storage [https://github.com/edoburu/django-private-storage#django-private-storage].
This instance is used for storing csv files of batch imports of users.

By default, an instance of private_storage.storage.files.PrivateFileSystemStorage
is used.

OPENWISP_RADIUS_CALLED_STATION_IDS

Default: {}

This setting allows to specify the parameters to connect to the different
OpenVPN management interfaces available for an organization. This setting is used by the
convert_called_station_id command.

It should contain configuration in following format:

OPENWISP_RADIUS_CALLED_STATION_IDS = {
 # UUID of the organization for which settings are being specified
 # In this example 'default'
 '<organization_uuid>': {
 'openvpn_config': [
 {
 # Host address of OpenVPN management
 'host': '<host>',
 # Port of OpenVPN management interface. Defaults to 7505 (integer)
 'port': 7506,
 # Password of OpenVPN management interface (optional)
 'password': '<management_interface_password>',
 }
],
 # List of CALLED STATION IDs that has to be converted,
 # These look like: 00:27:22:F3:FA:F1:gw1.openwisp.org
 'unconverted_ids': ['<called_station_id>'],
 }
}

OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE

Default: False

If set to True, “Called Station ID” of a RADIUS session will be
converted (as per configuration defined in OPENWISP_RADIUS_CALLED_STATION_IDS)
just after the RADIUS session is created.

OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT

Default: u'%a %b %d %H:%M:%S %Y'

Specifies the datetime format of OpenVPN management status parser used by the
convert_called_station_id
command.

OPENWISP_RADIUS_UNVERIFY_INACTIVE_USERS

Default: 0 (disabled)

Number of days from user’s last_login after which the
user will be flagged as unverified.

When set to 0, the feature would be disabled and the user will
not be flagged as unverified.

OPENWISP_RADIUS_DELETE_INACTIVE_USERS

Default: 0 (disabled)

Number of days from user’s last_login after which the
user will be deleted.

When set to 0, the feature would be disabled and the user will
not be deleted.

API and user token related settings

These settings control details related to the API and the radius user token.

OPENWISP_RADIUS_API_URLCONF

Default: None

Changes the urlconf option of django urls to point the RADIUS API
urls to another installed module, example, myapp.urls
(useful when you have a seperate API instance.)

OPENWISP_RADIUS_API_BASEURL

Default: / (points to same server)

If you have a seperate instance of openwisp-radius API on a
different domain, you can use this option to change the base of the image
download URL, this will enable you to point to your API server’s domain,
example value: https://myradius.myapp.com.

OPENWISP_RADIUS_API

Default: True

Indicates whether the REST API of openwisp-radius is enabled or not.

OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN

Default: True

Radius user tokens are used for authorizing users.

When this setting is True radius user tokens are deleted right after a successful
authorization is performed. This reduces the possibility of attackers reusing
the access tokens and posing as other users if they manage to intercept it somehow.

OPENWISP_RADIUS_API_AUTHORIZE_REJECT

Default: False

Indicates wether the Authorize API view will return
{"control:Auth-Type": "Reject"} or not.

Rejecting an authorization request explicitly will prevent freeradius from
attempting to perform authorization with other mechanisms (eg: radius checks, LDAP, etc.).

When set to False, if an authorization request fails, the API will respond with
None, which will allow freeradius to keep attempting to authorize the request
with other freeradius modules.

Set this to True if you are performing authorization exclusively through the REST API.

OPENWISP_RADIUS_API_ACCOUNTING_AUTO_GROUP

Default: True

When this setting is enabled, every accounting instance saved from the API will have
its groupname attribute automatically filled in.
The value filled in will be the groupname of the RadiusUserGroup of the highest
priority among the RadiusUserGroups related to the user with the username as in the
accounting instance.
In the event there is no user in the database corresponding to the username in the
accounting instance, the failure will be logged with warning level but the accounting
will be saved as usual.

OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES

Default: []

This setting is used to specify a list of international mobile prefixes which should
be allowed to register into the system via the user registration API.

That is, only users with phone numbers using the specified international prefixes will
be allowed to register.

Leaving this unset or setting it to an empty list ([]) will effectively allow
any international mobile prefix to register (which is the default setting).

For example:

OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES = ['+44', '+237']

Using the setting above will only allow phone numbers from the UK (+44)
or Cameroon (+237).

Note

This setting is applicable only for organizations
which have enabled the SMS verification option.

OPENWISP_RADIUS_ALLOW_FIXED_LINE_OR_MOBILE

Default: False

OpenWISP RADIUS only allow using mobile phone numbers for user registration.
This can cause issues in regions where fixed line and mobile phone numbers

uses the same pattern (e.g. USA). Setting the value to True

would make phone number type checking less strict.

OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS

Default:

{
 'first_name': 'disabled',
 'last_name': 'disabled',
 'birth_date': 'disabled',
 'location': 'disabled',
}

This global setting is used to specify if the optional user fields
(first_name, last_name, location and birth_date)
shall be disabled (hence ignored), allowed or required in the
User Registration API.

The allowed values are:

	disabled: (default) the field is disabled.

	allowed: the field is allowed but not mandatory.

	mandatory: the field is mandatory.

For example:

OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS = {
 'first_name': 'disabled',
 'last_name': 'disabled',
 'birth_date': 'mandatory',
 'location': 'allowed',
}

Means:

	first_name and last_name fields are not required and their values
if provided are ignored.

	location field is not required but its value will
be saved to the database if provided.

	birth_date field is required and a ValidationError
exception is raised if its value is not provided.

The setting for each field can also be overridden at organization level
if needed, by going to
Home › Users and Organizations › Organizations > Edit organization and
then scrolling down to ORGANIZATION RADIUS SETTINGS.

[image: optional field setting]
By default the fields at organization level hold a NULL value,
which means that the global setting specified in settings.py will
be used.

OPENWISP_RADIUS_PASSWORD_RESET_URLS

Note

This setting can be overridden for each organization in the
organization admin page, the setting implementation is left
for backward compatibility but may be deprecated in the future.

Default:

{
 '__all__': 'https://{site}/{organization}/password/reset/confirm/{uid}/{token}'
}

A dictionary representing the frontend URLs through which end users can complete
the password reset operation.

The frontend could be openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages]
or another in-house captive page solution.

Keys of the dictionary must be either UUID of organizations or __all__, which is the fallback URL
that will be used in case there’s no customized URL for a specific organization.

The password reset URL must contain the “{token}” and “{uid}” placeholders.

The meaning of the variables in the string is the following:

	{site}: site domain as defined in the
django site framework [https://docs.djangoproject.com/en/dev/ref/contrib/sites/]
(defaults to example.com and an be changed through the django admin)

	{organization}: organization slug

	{uid}: uid of the password reset request

	{token}: token of the password reset request

If you’re using openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
the configuration is fairly simple, in case the nodejs app is installed in the same domain
of openwisp-radius, you only have to ensure the domain field in the main Site object is correct,
if instead the nodejs app is deployed on a different domain, say login.wifiservice.com,
the configuration should be simply changed to:

{
 '__all__': 'https://login.wifiservice.com/{organization}/password/reset/confirm/{uid}/{token}'
}

OPENWISP_RADIUS_REGISTRATION_API_ENABLED

Default: True

Indicates whether the API registration view is enabled or not.
When this setting is disabled (i.e. False), the registration API view is disabled.

This setting can be overridden in individual organizations
via the admin interface, by going to Organizations
then edit a specific organization and scroll down to
“Organization RADIUS settings”, as shown in the screenshot below.

[image: Organization RADIUS settings]

Note

We recommend using the override via the admin interface only when there
are special organizations which need a different configuration, otherwise,
if all the organization use the same configuration, we recommend
changing the global setting.

OPENWISP_RADIUS_SMS_VERIFICATION_ENABLED

Default: False

Note

If you’re looking for instructions on how to configure SMS sending,
see SMS Token Related Settings.

If Identity verification is required,
this setting indicates whether users who sign up should be required to
verify their mobile phone number via SMS.

This can be overridden for each organization separately
via the organization radius settings section of the admin interface.

[image: SMS verification enabled]

OPENWISP_RADIUS_MAC_ADDR_ROAMING_ENABLED

Default: False

Indicates whether MAC address roaming is supported.
When this setting is enabled (i.e. True),
MAC address roaming is enabled for all organizations.

This setting can be overridden in individual organizations
via the admin interface, by going to Organizations
then edit a specific organization and scroll down to
“Organization RADIUS settings”, as shown in the screenshot below.

[image: Organization MAC Address Roaming settings]

Note

We recommend using the override via the admin interface only when there
are special organizations which need a different configuration, otherwise,
if all the organization use the same configuration, we recommend
changing the global setting.

OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION

Default: False

Indicates whether organizations require a user to be verified in order to login.
This can be overridden globally or for each organization separately via the admin
interface.

If this is enabled, each registered user should be verified using a verification method.
The following choices are available by default:

	'' (empty string): unspecified

	manual: manually created

	email: Email (No Identity Verification)

	mobile_phone: Mobile phone number
verification via SMS

	social_login: social login feature

Note

Of the methods listed above, mobile_phone is generally
accepted as a legal and valid form of indirect identity verification
in those countries who require to provide
a valid ID document before buying a SIM card.

Organizations which are required by law to identify their users
before allowing them to access the network (eg: ISPs) can restrict
users to register only through this method and can configure the system
to only allow international mobile prefixes
of countries which require a valid ID document to buy a SIM card.

Disclaimer: these are just suggestions on possible configurations
of OpenWISP RADIUS and must not be considered as legal advice.

Adding support for more registration/verification methods

For those who need to implement additional registration and identity
verification methods, such as supporting a National ID card, new methods
can be added or an existing method can be removed using
the register_registration_method
and unregister_registration_method functions respectively.

For example:

from openwisp_radius.registration import (
 register_registration_method,
 unregister_registration_method,
)

Enable registering via national digital ID
register_registration_method('national_id', 'National Digital ID')

Remove mobile verification method
unregister_registration_method('mobile_phone')

Note

Both functions will fail if a specific registration method
is already registered or unregistered, unless the keyword argument
fail_loud is passed as False (this useful when working with
additional registration methods which are supported by multiple
custom modules).

Pass strong_identity as True to to indicate that users who
register using that method have indirectly verified their identity
(eg: SMS verification,
credit card, national ID card, etc).

Warning

If you need to implement a registration method that needs to grant limited
internet access to unverified users so they can complete their
verification process online on other websites which cannot be predicted
and hence cannot be added to the walled garden, you can pass
authorize_unverified=True to the register_registration_method
function.

This is needed to implement payment flows in which users insert
a specific 3D secure code in the website of their bank.
Keep in mind that you should create a specific limited radius group
for these unverified users.

Payment flows and credit/debit card verification are fully implemented
in OpenWISP Subscriptions, a premium module available only to
customers of the
commercial support offering of OpenWISP.

Email related settings

Emails can be sent to users whose usernames or passwords have been auto-generated.
The content of these emails can be customized with the settings explained below.

OPENWISP_RADIUS_BATCH_MAIL_SUBJECT

Default: Credentials

It is the subject of the mail to be sent to the users. Eg: Login Credentials.

OPENWISP_RADIUS_BATCH_MAIL_MESSAGE

Default: username: {}, password: {}

The message should be a string in the format Your username is {} and password is {}.

The text could be anything but should have the format string operator {} for
.format operations to work.

OPENWISP_RADIUS_BATCH_MAIL_SENDER

Default: settings.DEFAULT_FROM_EMAIL

It is the sender email which is also to be configured in the SMTP settings.
The default sender email is a common setting from the
Django core settings [https://docs.djangoproject.com/en/dev/ref/settings/#default-from-email]
under DEFAULT_FROM_EMAIL.
Currently, DEFAULT_FROM_EMAIL is set to to webmaster@localhost.

Counter related settings

OPENWISP_RADIUS_COUNTERS

Default: depends on the database backend in use,
see How limits are enforced: counters to find out what are the default counters enabled.

It’s a list of strings, each representing the python path to a counter class.

It may be set to an empty list or tuple to disable the counter feature, eg:

OPENWISP_RADIUS_COUNTERS = []

If custom counters have been implemented, this setting should be changed
to include the new classes, eg:

OPENWISP_RADIUS_COUNTERS = [
 # default counters for PostgreSQL, may be removed if not needed
 'openwisp_radius.counters.postgresql.daily_counter.DailyCounter',
 'openwisp_radius.counters.postgresql.daily_traffic_counter.DailyTrafficCounter',
 # custom counters
 'myproject.counters.CustomCounter1',
 'myproject.counters.CustomCounter2',
]

OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME

Default: Max-Daily-Session-Traffic

Used by DailyTrafficCounter,
it indicates the check attribute which is looked for
in the database to find the maximum amount of daily traffic
which users having the default users radius group assigned can consume.

OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME

Default: CoovaChilli-Max-Total-Octets

Used by DailyTrafficCounter,
it indicates the reply attribute which is returned to the NAS
to indicate how much remaining traffic users
which users having the default users radius group assigned
can consume.

It should be changed according to the NAS software in use, for example,
if using PfSense, this setting should be set to pfSense-Max-Total-Octets.

OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP

Default: {}

Used by User Radius Usage API,
it stores mapping of RADIUS attributes to the unit of value
enforced by the attribute, e.g. bytes for traffic counters and
seconds for session time counters.

In the following example, the setting is configured to return bytes
type in the API response for ChilliSpot-Max-Input-Octets attribute:

OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP = {
 'ChilliSpot-Max-Input-Octets': 'bytes'
}

Social Login related settings

The following settings are related to the social login feature.

OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED

Default: False

Indicates whether the registration using social applications
is enabled or not. When this setting is enabled (i.e. True),
authentication using social applications is enabled for all organizations.

This setting can be overridden in individual organizations
via the admin interface, by going to Organizations
then edit a specific organization and scroll down to
“Organization RADIUS settings”, as shown in the screenshot below.

[image: Organization social login settings]

Note

We recommend using the override via the admin interface only when there
are special organizations which need a different configuration, otherwise,
if all the organization use the same configuration, we recommend
changing the global setting.

SAML related settings

The following settings are related to the SAML feature.

OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED

Default: False

Indicates whether registration using SAML is enabled or not.
When this setting is enabled (i.e. True),
authentication using SAML is enabled for all organizations.

This setting can be overridden in individual organizations
via the admin interface, by going to Organizations
then edit a specific organization and scroll down to
“Organization RADIUS settings”, as shown in the screenshot below.

[image: Organization SAML settings]

Note

We recommend using the override via the admin interface only when there
are special organizations which need a different configuration, otherwise,
if all the organization use the same configuration, we recommend
changing the global setting.

OPENWISP_RADIUS_SAML_REGISTRATION_METHOD_LABEL

Default: 'Single Sign-On (SAML)'

Sets the verbose name of SAML registration method.

OPENWISP_RADIUS_SAML_IS_VERIFIED

Default: False

Setting this to True will automatically flag user accounts
created during SAML sign-in as verified users (RegisteredUser.is_verified=True).

This is useful when SAML identity providers can be trusted
to be legally valid identity verifiers.

OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME

Default: False

Allows updating username of a registered user with the value
received from SAML Identity Provider. Read the
FAQs in SAML integration documentation
for details.

SMS token related settings

These settings allow to control aspects and limitations of the SMS tokens
which are sent to users for the purpose of
verifying their mobile phone number.

These settings are applicable only when
SMS verification is enabled.

SENDSMS_BACKEND

This setting takes a python path which points to the django-sendsms [https://github.com/stefanfoulis/django-sendsms]
backend which will be used by the system to send SMS messages.

The list of supported SMS services can be seen in the source code of
the django-sendsms backends [https://github.com/stefanfoulis/django-sendsms/tree/main/sendsms/backends].
Adding support for other SMS services can be done by subclassing
the BaseSmsBackend and implement the logic needed to talk to the
SMS service.

The value of this setting can point to any class on the python path,
so the backend doesn’t have to be necessarily shipped in django-sendsms
but can be deployed in any other location.

OPENWISP_RADIUS_SMS_TOKEN_DEFAULT_VALIDITY

Default: 30

For how many minutes the SMS token is valid for.

OPENWISP_RADIUS_SMS_TOKEN_LENGTH

Default: 6

The length of the SMS token.

OPENWISP_RADIUS_SMS_TOKEN_HASH_ALGORITHM

Default: 'sha256'

The hashing algorithm used to generate the numeric code.

OPENWISP_RADIUS_SMS_COOLDOWN

Default: 30

Seconds users needs to wait before being able to request a new SMS token.

OPENWISP_RADIUS_SMS_TOKEN_MAX_ATTEMPTS

Default: 5

The max number of mistakes tolerated during verification,
after this amount of mistaken attempts, it won’t be possible to
verify the token anymore and it will be necessary to request a new one.

OPENWISP_RADIUS_SMS_TOKEN_MAX_USER_DAILY

Default: 5

The max number of SMS tokens a single user can request within a day.

OPENWISP_RADIUS_SMS_TOKEN_MAX_IP_DAILY

Default: 999

The max number of tokens which can be requested from the same IP address
during the same day.

OPENWISP_RADIUS_SMS_MESSAGE_TEMPLATE

Default: {organization} verification code: {code}

The template used for sending verification code to users via SMS.

Note

The template should always contain {code} placeholder.
Otherwise, the sent SMS will not contain the verification code.

This value can be overridden per organization in the organization
change page. You can skip setting this option if you intend to set
it from organization change page for each organization. Keep in mind that
the default value is translated in other languages. If the value is
customized the translations will not work, so if you need this message
to be translated in different languages you should either not change the
default value or prepare the additional translations.

Management commands

These management commands are necessary for enabling certain features and
for database cleanup.

Example usage:

cd tests/
./manage.py <command> <args>

In this page we list the management commands currently available in openwisp-radius.

delete_old_radacct

This command deletes RADIUS accounting sessions older than <days>.

./manage.py delete_old_radacct <days>

For example:

./manage.py delete_old_radacct 365

delete_old_postauth

This command deletes RADIUS post-auth logs older than <days>.

./manage.py delete_old_postauth <days>

For example:

./manage.py delete_old_postauth 365

cleanup_stale_radacct

This command closes stale RADIUS sessions that have remained open for
the number of specified <days>.

./manage.py cleanup_stale_radacct <days>

For example:

./manage.py cleanup_stale_radacct 15

deactivate_expired_users

Note

Find out more about this feature in its dedicated page

This command deactivates expired user accounts which were created temporarily
(eg: for en event) and have an expiration date set.

./manage.py deactivate_expired_users

delete_old_radiusbatch_users

This command deletes users that have expired (and should have been deactivated by
deactivate_expired_users) for more than the specified <duration_in_months>.

./manage.py delete_old_radiusbatch_users --older-than-months <duration_in_months>

Note that the default duration is set to 18 months.

delete_unverified_users

This command deletes unverified users that have been registered for
more than specified duration and have no associated radius session.
This feature is needed to delete users who have registered but never
completed the verification process.
Staff users will not be deleted by this management command.

./manage.py delete_unverified_users --older-than-days <duration_in_days>

Note that the default duration is set to 1 day.

It is also possible to exclude users that have registered using specified methods.
You can specify multiple methods separated by comma(,). Following is an example:

./manage.py delete_unverified_users --older-than-days 1 --exclude-methods mobile_phone,email

upgrade_from_django_freeradius

If you are upgrading from django-freeradius [https://github.com/openwisp/django-freeradius]
to openwisp-radius, there is an easy migration script that will import your freeradius
database, sites, social website account users, users & groups to openwisp-radius instance:

./manage.py upgrade_from_django_freeradius

The management command accepts an argument --backup, that you can pass
to give the location of the backup files, by default it looks in the tests/
directory, eg:

./manage.py upgrade_from_django_freeradius --backup /home/user/django_freeradius/

The management command accepts another argument --organization, if you want to
import data to a specific organization, you can give its UUID for the same,
by default the data is added to the first found organization, eg:

./manage.py upgrade_from_django_freeradius --organization 900856da-c89a-412d-8fee-45a9c763ca0b

Note

You can follow the tutorial to migrate database from django-freeradius [https://github.com/openwisp/django-freeradius/blob/master/README.rst].

Warning

It is not possible to export user credential data for radiusbatch created using prefix, please manually preserve the PDF files if you want to access the data in the future.

convert_called_station_id

If an installation uses a centralized captive portal, the value of “Called Station ID” of
RADIUS Sessions will always show the MAC address of the captive portal instead of the access points.

This command will update the “Called Station ID” to reflect the MAC address of the access points
using information from OpenVPN. It requires installing openvpn_status,
which can be installed using the following command

pip install openwisp-radius[openvpn_status]

In order to work, this command requires to be configured via the
OPENWISP_RADIUS_CALLED_STATION_IDS setting.

Use the following command if you want to perform this operation for all
RADIUS sessions that meet criteria of OPENWISP_RADIUS_CALLED_STATION_IDS
setting.

./manage.py convert_called_station_id

You can also convert the “Called Station ID” of a particular RADIUS session by
replacing session’s unique_id in the following command:

./manage.py convert_called_station_id --unique_id=<session_unique_id>

Note

If you encounter ParseError for datetime data, you can set the datetime format
of the parser using OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT
setting.

Note

convert_called_station_id command will only operate on open RADIUS sessions,
i.e. the “stop_time” field is None.

But if you are converting a single RADIUS session, it will operate on
it even if the session is closed.

Importing users

This feature can be used for importing users from a csv file. There are many features included in it such as:

	Importing users in batches: all of the users of a particular csv file would
be stored in batches and can be retrieved/ deleted easily using the batch functions.

	Set an expiration date: Expiration date can be set for a batch after which the users
would not able to authenticate to the RADIUS Server.

	Autogenerate usernames and passwords: The usernames and passwords are
automatically generated if they aren’t provided in the csv file.
Usernames are generated from the email address whereas passwords are
generated randomly and their lengths can be customized.

	Passwords are accepted in both cleartext and hash formats from the CSV.

	Send mails to users whose passwords have been generated automatically.

This operation can be performed via the admin interface,
with a management command or via the REST API.

CSV Format

The CSV shall be of the format:

username,password,email,firstname,lastname

Imported users with hashed passwords

The hashes are directly stored in the database if they are of the django hash format [https://docs.djangoproject.com/en/2.0/topics/auth/passwords/].

For example, a password myPassword123, hashed using salted SHA1 algorithm, will look like:

pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=

So a full CSV line containing that password would be:

username,pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=,email@email.com,firstname,lastname

Importing users with clear-text passwords

Clear-text passwords must be flagged with the prefix cleartext$.

For example, if we want to use the password qwerty,
we must use: cleartext$qwerty.

Auto-generation of usernames and passwords

Email is the only mandatory field of the CSV file.

Other fields like username and password will be auto-generated if omitted.

Emails will be sent to users whose usernames or passwords have been
auto-generated and contents of these emails can be customized too.

Here are some defined settings for doing that:

	OPENWISP_RADIUS_BATCH_MAIL_SUBJECT

	OPENWISP_RADIUS_BATCH_MAIL_MESSAGE

	OPENWISP_RADIUS_BATCH_MAIL_SENDER

Using the admin interface

Note

The CSV uploaded must follow the CSV format described above.

To generate users from the admin interface, go to
Home > Batch user creation operations > Add
(URL: /admin/openwisp_radius/radiusbatch/add),
set Strategy to Import from CSV,
choose the CSV file to upload and save.

[image: Demo: adding users from CSV]

Management command: batch_add_users

This command imports users from a csv file. Usage is as shown below.

./manage.py batch_add_users --name <name_of_batch> \
 --organization=<organization-slug> \
 --file <filepath> \
 --expiration <expiration_date> \
 --password-length <password_length>

Note

The expiration and password-length are optional parameters which default to never and 8 respectively.

REST API: Batch user creation

See API documentation: Batch user creation.

Generating users

Many a times, a network admin might need to generate temporary users (eg: events).

This feature can be used for generating users by specifying a prefix and the number
of users to be generated.

There are many features included in it such as:

	Generating users in batches: all of the users of a particular prefix would be
stored in batches and can be retrieved/deleted easily using the batch functions.

	Download user credentials in PDF format: get the usernames and passwords
generated outputted into a PDF.

	Set an expiration date: an expiration date can be set for a batch after which
the users would not able to authenticate to the RADIUS Server.

This operation can be performed via the admin interface,
with a management command or via the REST API.

Note

Users imported or generated through this form will be flagged as verified if the
organization requires identity verification, otherwise the generated users would
not be able to log in. If this organization requires identity verification, make
sure the identity of the users is verified before giving out the credentials.

Using the admin interface

To generate users from the admin interface, go to
Home > Batch user creation operations > Add
(URL: /admin/openwisp_radius/radiusbatch/add),
set Strategy to Generate from prefix, fill in the remaining fields
that are shown after the selection of the strategy and save.

Once the batch object has been created, a PDF containing the user credentials can
be downloaded by using the “Download user credentials” button in the upper right
corner of the page:

[image: Downlaod user credentials button in admin interface]
The contents of the PDF is in format of a table of users & their passwords:

[image: Sample contents of the user credentials PDF file]
Usage Demonstration:

[image: Demo: adding users from prefix]

Management command: prefix_add_users

This command generates users whose usernames start with a particular prefix. Usage is as shown below.

./manage.py prefix_add_users --name <name_of_batch> \
 --organization=<organization-slug> \
 --prefix <prefix> \
 --n <number_of_users> \
 --expiration <expiration_date> \
 --password-length <password_length> \
 --output <path_to_pdf_file>

Note

The expiration, password-length and output are optional parameters.
The options expiration and password-length default to never and 8 respectively.
If output parameter is not provided, pdf file is not created on the server
and can be accessed from the admin interface.

REST API: Batch user creation

See API documentation: Batch user creation.

Enforcing session limits

The default freeradius schema does not include a table where groups are stored,
but openwisp-radius adds a model called RadiusGroup and alters the default
freeradius schema to add some optional foreign-keys from other tables like:

	radgroupcheck

	radgroupreply

	radusergroup

These foreign keys make it easier to automate many synchronization and integrity
checks between the RadiusGroup table and its related tables but they are
not strictly mandatory from the database point of view:
their value can be NULL and their presence and validation is handled at
application level, this makes it easy to use existing freeradius databases.

For each group, checks and replies can be specified directly in the edit page
of a Radius Group (admin > groups > add group or change group).

Default groups

Some groups are created automatically by openwisp-radius during the initial
migrations:

	users: this is the default group which limits users sessions
to 3 hours and 300 MB (daily)

	power-users: this group does not have any check, therefore users who
are members of this group won’t be limited in any way

You can customize the checks and the replies of these groups, as well as create
new groups according to your needs and preferences.

Note on the default group: keep in mind that the group flagged as
default will by automatically assigned to new users, it cannot be deleted nor
it can be flagged as non-default: to set another group as default simply check
that group as the default one, save and openwisp-radius will remove the
default flag from the old default group.

How limits are enforced: counters

In Freeradius, this kind of feature is implemented with the
rml_sqlcounter [https://wiki.freeradius.org/modules/Rlm_sqlcounter].

The problem with this FreeRADIUS module is that it doesn’t know about OpenWISP,
so it does not support multi-tenancy.
This means that if multiple organizations are using the OpenWISP instance,
it’s possible that a user may be an end user of multiple organizations and
hence have one radius group assigned for each, but the sqlcounter module will
not understand the right group to choose when enforcing limits, with the
result that the enforcing of limits will not work as expected, unless one
FreeRADIUS site with different sqlcounter configurations is created for
each organization using the system, which is doable but cumbersome to maintain.

For the reasons explained above, an alternative counter feature
has been implemented in the authorize API endpoint of OpenWISP RADIUS.

The default counters available are described below.

DailyCounter

This counter is used to limit the amount of time users can use
the network every day. It works by checking whether the total
session time of a user during a specific day is below the value indicated in
the Max-Daily-Session group check attribute, sending the remaining
session time with a Session-Timeout reply message or rejecting
the authorization if the limit has been passed.

DailyTrafficCounter

This counter is used to limit the amount of traffic
users can consume every day. It works by checking whether the total amount
of download plus upload octets (bytes consumed) is below the value indicated
in the Max-Daily-Session-Traffic group check attribute, sending the
remaining octets with a reply message or rejecting
the authorization if the limit has been passed.

The attributes used for the check and or the reply message are configurable
because it can differ from NAS to NAS, see OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME
OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME for more information.

MonthlyTrafficCounter

This counter is used to limit the amount of traffic
users can consume every solar month.
It works by checking whether the total amount
of download plus upload octets (bytes consumed) is below the value indicated
in the Max-Monthly-Session-Traffic group check attribute, sending the
remaining octets with a reply message or rejecting
the authorization if the limit has been passed.

The reply message is configurable
because it can differ from NAS to NAS,
OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME for more information.

MonthlySubscriptionTrafficCounter

Important

This counter is not enabled by default.
It can be enabled via the Counter related settings.

Same as MonthlyTrafficCounter, but with the difference that
the reset period depends on the day in which the user subscribed
to the service: if the user signed up (or their account was created by
an admin) on a date like November 15 2022, the reset period will
start on the 15th day of every month.

Database support

The counters described above are available for PostgreSQL, MySQL, SQLite
and are enabled by default.

There’s a different class of each counter for each database, because
the query is executed with raw SQL defined on each class, instead of
the classic django-ORM approach which is database agnostic.

It was implemented this way to ensure maximum flexibility and adherence
to the FreeRADIUS sqlcounter implementation.

Django Settings

The settings available to control the behavior of counters are
described in Counter related settings.

Writing custom counter classes

It is possible to write custom counter classes to satisfy any need.

The easiest way is to subclass openwisp_radius.counters.base.BaseCounter,
then implement at least the following attributes:

	counter_name: name of the counter, used internally for debugging;

	check_name: attribute name used in the database lookup to the group check table;

	reply_name: attribute name sent in the reply message;

	reset: reset period, either daily, weekly, monthly,
monthly_subscription or never;

	sql: the raw SQL query to execute;

	get_sql_params: a method which returns a list of the arguments passed
to the interpolation of the raw sql query.

Please look at the source code of OpenWISP RADIUS to find out more.

	openwisp_radius.counters.base [https://github.com/openwisp/openwisp-radius/blob/master/openwisp_radius/counters/base.py]

	openwisp_radius.counters.postgresql [https://github.com/openwisp/openwisp-radius/tree/master/openwisp_radius/counters/postgresql]

Once the new class is ready, you will need to add it to
OPENWISP_RADIUS_COUNTERS.

It is also possible to implement a check class in a completely custom
fashion (that is, not inheriting from BaseCounter), the only
requirements are:

	the class must have a constructor (__init__ method) identical to
the one used in the BaseCounter class;

	the class must have a check method which doesn’t need any required argument
and returns the remaining counter value or raises MaxQuotaReached if
the limit has been reached and the authorization should be rejected;
This method may return None if no additional RADIUS attribute
needs to be added to the response.

Registration of new users

openwisp-radius uses django-rest-auth [https://github.com/jazzband/dj-rest-auth/]
which provides registration of new users via REST API so you can implement
registration and password reset directly from your captive page.

The registration API endpoint is described in API: User Registration.

If you need users to self-register to a public wifi service, we suggest
to take a look at openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which is built to work with openwisp-radius.

Social Login

Important

The social login feature is disabled by default.

In order to enable this feature you have to follow
the setup instructions below
and then activate it via global setting or from the admin interface.

Social login is supported by generating an additional temporary token right
after users perform the social sign-in, the user is then redirected to the
captive page with two querystring parameters: username and token.

The captive page must recognize these two parameters and automatically perform
the submit action of the login form: username should obviously used for the
username field, while token should be used for the password field.

The internal REST API of openwisp-radius will recognize the token and authorize
the user.

This kind of implementation allows to implement the social login with any captive
portal which already supports the RADIUS protocol because it’s totally transparent
for it, that is, the captive portal doesn’t even know the user is signing-in with
a social network.

Note

If you’re building a public wifi service, we suggest
to take a look at openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which is built to work with openwisp-radius.

Setup

Install django-allauth:

pip install django-allauth

Ensure your settings.py looks like the following (we will show how to
configure of the facebook social provider):

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for social login
 'rest_framework.authtoken',
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'allauth.socialaccount',
 # showing facebook as an example
 # to configure social login with other social networks
 # refer to the django-allauth documentation
 'allauth.socialaccount.providers.facebook',
]

SITE_ID = 1

showing facebook as an example
to configure social login with other social networks
refer to the django-allauth documentation
SOCIALACCOUNT_PROVIDERS = {
 'facebook': {
 'METHOD': 'oauth2',
 'SCOPE': ['email', 'public_profile'],
 'AUTH_PARAMS': {'auth_type': 'reauthenticate'},
 'INIT_PARAMS': {'cookie': True},
 'FIELDS': [
 'id',
 'email',
 'name',
 'first_name',
 'last_name',
 'verified',
],
 'VERIFIED_EMAIL': True,
 }
}

Ensure your main urls.py contains the allauth.urls:

urlpatterns = [
 # .. other urls ...
 path('accounts/', include('allauth.urls')),
]

Configure the social account application

Refer to the django-allauth documentation to find out how to complete the
configuration of a sample facebook login app [https://django-allauth.readthedocs.io/en/latest/providers.html#facebook].

Captive page button example

Following the previous example configuration with facebook, in your captive page
you will need an HTML button similar to the ones in the following examples.

This example needs the slug of the organization to assign the new user to
the right organization:

<a href="https://openwisp2.mywifiproject.com/accounts/facebook/login/?next=%2Fradius%2Fsocial-login%2Fdefault%2F%3Fcp%3Dhttps%3A%2F%2Fcaptivepage.mywifiproject.com%2F%26last%3D"
 class="button">Log in with Facebook

Substitute openwisp2.mywifiproject.com, captivepage.mywifiproject.com
and default with the hostname of your openwisp-radius instance, your captive
page and the organization slug respectively.

Alternatively, you can take a look at
openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which provides buttons for Facebook, Google and Twitter by default.

Settings

See social login related settings.

Single Sign-On (SAML)

Important

The SAML registration method is disabled by default.

In order to enable this feature you have to follow
the SAML setup instructions below
and then activate it via global setting or from the admin interface.

SAML [http://saml.xml.org/about-saml] is supported by generating
an additional temporary token right after users authenticates via SSO,
the user is then redirected to the captive page with 3 querystring
parameters:

	username

	token (REST auth token)

	login_method=saml

The captive page must recognize these two parameters, validate the token
and automatically perform the submit action of the captive portal login form:
username should obviously used for the username field,
while token should be used for the password field.

The third parameter, login_method=saml, is needed because it allows
the captive page to remember that the user logged in via SAML,
because it will need to perform the SAML logout later on.

The internal REST API of openwisp-radius will recognize the token and authorize
the user.

This kind of implementation allows to support SAML with any captive
portal which already supports the RADIUS protocol because it’s totally transparent
for it, that is, the captive portal doesn’t even know the user is signing-in with
a SSO.

Note

If you’re building a public wifi service, we suggest
to take a look at openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which is built to work with openwisp-radius.

Setup

Install required system dependencies:

sudo apt install xmlsec1

Install Python dependencies:

pip install openwisp-radius[saml]

Ensure your settings.py looks like the following:

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for SAML login
 'rest_framework.authtoken',
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'djangosaml2'
]

SITE_ID = 1

Update AUTHENTICATION_BACKENDS
AUTHENTICATION_BACKENDS = (
 'openwisp_users.backends.UsersAuthenticationBackend',
 'openwisp_radius.saml.backends.OpenwispRadiusSaml2Backend', # <- add for SAML login
)

Update MIDDLEWARE
MIDDLEWARE = [
 # ... other middlewares ...
 'djangosaml2.middleware.SamlSessionMiddleware',
]

Ensure your main urls.py contains the openwisp_users.accounts.urls:

urlpatterns = [
 # .. other urls ...
 path('accounts/', include('openwisp_users.accounts.urls')),
]

Configure the djangosaml2 settings

Refer to the djangosaml2 documentation to find out how to configure
required settings for SAML [https://djangosaml2.readthedocs.io/contents/setup.html#configuration].

Captive page button example

After successfully configuring SAML settings for your Identity Provider,
you will need an HTML button similar to the one in the following example.

This example needs the slug of the organization to assign the new user to
the right organization:

<a href="https://openwisp2.mywifiproject.com/radius/saml2/login/?RelayState=https://captivepage.mywifiproject.com%3Forg%3Ddefault"
 class="button">
 Log in with SSO

Substitute openwisp2.mywifiproject.com, https://captivepage.mywifiproject.com
and default with the hostname of your openwisp-radius instance, your captive
page and the organization slug respectively.

Alternatively, you can take a look at
openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages],
which provides buttons for Single Sign-On (SAML) by default.

Logout

When logging out a user which logged in via SAML, the captive page
should also call the SAML logout URL: /radius/saml2/logout/.

The openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages]
app supports this with minimal configuration, refer to the
“Configuring SAML Login & Logout” [https://github.com/openwisp/openwisp-wifi-login-pages#configuring-saml-login--logout]
section.

Settings

See SAML related settings.

FAQs

Preventing change in username of a registered user

The djangosaml2 library requires configuring SAML_DJANGO_USER_MAIN_ATTRIBUTE
setting which serves as the primary lookup value for User objects.
Whenever a user logs in or registers through the SAML method,
a database query is made to check whether such a user already exists.
This lookup is done using the value of SAML_DJANGO_USER_MAIN_ATTRIBUTE setting.
If a match is found, the details of the user are updated with the
information received from SAML Identity Provider.

If a user (who has registered on OpenWISP with a different method from SAML)
logs into OpenWISP with SAML, then the default behaviour of OpenWISP RADIUS
prevents updating username of this user. Because, this operation could
render the user’s old credentials useless. If you want to update the username
in such scenarios with details received from Identity Provider, set
OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME
to True.

Change of Authorization (CoA)

Important

The Change of Authorization (CoA) is disabled by default.

In order to enable this feature you have it enable it via
global setting or from the admin interface.

The openwisp-radius module supports the Change of Authorization (CoA)
specification of the RADIUS protocol described in
RFC 5176 [https://datatracker.ietf.org/doc/rfc5176/].

Whenever the RADIUS Group of a user is changed, openwisp-radius
updates the NAS with the user’s latest RADIUS Attributes. This is achieved
by sending CoA RADIUS packet to NAS for all open RADIUS sessions of
the user. This allows enforcing RADIUS limits without requiring
the user to re-authenticate with the NAS.

The CoA RADIUS packet contains the RADIUS Attributes defined in the
new RADIUS Group of the user. If the new RADIUS Group does
not specify any attributes, the CoA RADIUS packet will unset the
attributes set by the previous RADIUS Group.

Consider the following example with two RADIUS Groups:

	RADIUS Group Name

	RADIUS Group Checks

	users

	

	Attribute

	Value

	Max-Daily-Session-Traffic

	:=3000000000

	Max-Daily-Session

	:=10800

	power-users

	Note: This group intentionally does not define any
limits.

A user, Jane is assigned users RADIUS Group and is currently using the
network, i.e. has an open RADIUS session. The administrator of the system
decided to upgrade the RADIUS Group of Jane to power-users, allowing
Jane to use the network without any limits. Without CoA, Jane will have to
logout of the captive portal (NAS) and log-in again to browse the network
without any limits. But when CoA is enabled in openwisp-radius, openwisp-radius
will update the NAS with the limits defined in Jane’s new RADIUS Group. In this
case, openwisp-radius will tell the NAS to unset the limits that were configured
by the previous RADIUS Group.

If the system administrators later decided to downgrade the RADIUS Group
of Jane to users, hence enforcing limits to the usage of the network,
openwisp-radius will update the NAS with the limits defined for the users
group for all active RADIUS sessions if CoA is enabled in openwisp-radius.

API Documentation

Table of Contents:

	API Documentation

	Live documentation

	Browsable web interface

	FreeRADIUS API Endpoints

	FreeRADIUS API Authentication

	Radius User Token

	Bearer token

	Querystring

	Organization UUID & RADIUS API Token

	API Throttling

	List of Endpoints

	Authorize

	Post Auth

	Accounting

	User API Endpoints

	List of Endpoints

	User Registration

	Reset password

	Confirm reset password

	Change password

	Login (Obtain User Auth Token)

	Validate user auth token

	User Radius Sessions

	User Radius Usage

	Create SMS token

	Get active SMS token status

	Verify/Validate SMS token

	Change phone number

	Batch user creation

	Batch CSV Download

Important

The REST API of openwisp-radius is enabled by default and may be turned off by
setting OPENWISP_RADIUS_API to False.

Live documentation

[image: Swagger API Documentation]
A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Browsable web interface

[image: API Interface]
Additionally, opening any of the endpoints listed below
directly in the browser will show the browsable API interface of Django-REST-Framework [https://www.django-rest-framework.org/topics/browsable-api/],
which makes it even easier to find out the details of each endpoint.

FreeRADIUS API Endpoints

The following section is dedicated to API endpoints that are designed
to be consumed by FreeRADIUS (Authorize, Post Auth, Accounting).

Important

These endpoints can be consumed only by hosts which have
been added to the freeradius allowed hosts list.

FreeRADIUS API Authentication

There are 3 different methods with which the FreeRADIUS API endpoints
can authenticate incoming requests and understand to which organization
these requests belong.

Radius User Token

This method relies on the presence of a special token which was obtained
by the user when authenticating via the
Obtain Auth Token View, this means
the user would have to log in through something like a web form first.

The flow works as follows:

	the user enters credentials in a login form belonging to a specific organization
and submits, the credentials are then sent to the Obtain Auth Token View;

	if credentials are correct, a radius user token associated to the user
and organization is created and returned in the response;

	the login page or app must then initiate the HTTP request to the web server
of the captive portal,
(the URL of the form action of the default captive login page)
using the radius user token as password, example:

curl -X POST http://captive.projcect.com:8005/index.php?zone=myorg \
 -d "auth_user=<username>&auth_pass=<radius_token>"

This method is recommended if you are using multiple organizations
in the same OpenWISP instance.

Note

By default, <radius_token> is valid for authentication for one
request only and a new <radius_token> needs to be obtained for
each request.
However, if OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN
is set to False, the <radius_token> is valid for authentication
as long as freeradius accounting Stop request is not sent
or the token is not deleted.

Warning

If you are using Radius User token method, keep in mind that one
user account can only authenticate with one organization
at a time, i.e a single user account cannot consume
services from multiple organizations simultaneously.

Bearer token

This other method allows to use the system without the need for a user
to obtain a token first, the drawback is that one FreeRADIUS site has to
be configured for each organization, the authorization credentials for
the specific organization is sent in each request,
see Configure the site for more information on
the FreeRADIUS site configuration.

The (Organization UUID and Organization RADIUS token) are sent in the authorization header of
the HTTP request in the form of a Bearer token, eg:

curl -X POST http://localhost:8000/api/v1/freeradius/authorize/ \
 -H "Authorization: Bearer <org-uuid> <token>" \
 -d "username=<username>&password=<password>"

This method is recommended if you are using only one organization
and you have no need nor intention of adding more organizations in the future.

Querystring

This method is identical to the previous one, but the credentials
are sent in querystring parameters, eg:

curl -X POST http://localhost:8000/api/v1/freeradius/authorize/?uuid=<org-uuid>&token=<token> \
 -d "username=<username>&password=<password>"

This method is not recommended for production usage, it should be
used for testing and debugging only
(because webservers can include the querystring parameters in their logs).

Organization UUID & RADIUS API Token

You can get (and set) the value of the OpenWISP RADIUS API token in the
organization configuration page on the OpenWISP dashboard
(select your organization in /admin/openwisp_users/organization/):

[image: Organization Radius Token]

Note

It is highly recommended that you use a hard to guess value, longer than
15 characters containing both letters and numbers.
Eg: 165f9a790787fc38e5cc12c1640db2300648d9a2.

You will also need the UUID of your organization from the organization change page
(select your organization in /admin/openwisp_users/organization/):

[image: Organization UUID]
Requests authorizing with bearer-token or querystring method must contain organization UUID & token. If the
tokens are missing or invalid, the request will receive a 403 HTTP error.

For information on how to configure FreeRADIUS to send the bearer tokens, see
Configure the site.

API Throttling

To override the default API throttling settings, add the following to your settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_THROTTLE_CLASSES': [
 'rest_framework.throttling.ScopedRateThrottle',
],
 'DEFAULT_THROTTLE_RATES': {
 # None by default
 'authorize': None,
 'postauth': None,
 'accounting': None,
 'obtain_auth_token': None,
 'validate_auth_token': None,
 'create_phone_token': None,
 'phone_token_status': None,
 'validate_phone_token': None,
 # Relaxed throttling Policy
 'others': '400/hour',
 },
}

The rate descriptions used in DEFAULT_THROTTLE_RATES may include
second, minute, hour or day as the throttle period, setting it to None will result in no throttling.

List of Endpoints

Authorize

Use by FreeRADIUS to perform the authorization phase.

It’s triggered when a user submits the form to login into the captive portal.
The captive portal has to be configured to send the password to freeradius in clear text
(will be encrypted with the freeradius shared secret, can be tunneled
via TLS for increased security if needed).

FreeRADIUS in turn will send the username and password via HTTPs to this endpoint.

Responds to only POST.

/api/v1/freeradius/authorize/

Example:

POST /api/v1/freeradius/authorize/ HTTP/1.1 username=testuser&password=testpassword

	Param

	Description

	username

	Username for the given user

	password

	Password for the given user

If the authorization is successful, the API will return all group replies
related to the group with highest priority assigned to the user.

If the authorization is unsuccessful, the response body can either be empty
or it can contain an explicit rejection, depending on how the
OPENWISP_RADIUS_API_AUTHORIZE_REJECT
setting is configured.

Post Auth

API endpoint designed to be used by FreeRADIUS postauth.

Responds only to POST.

/api/v1/freeradius/postauth/

	Param

	Description

	username

	Username

	password

	Password (*)

	reply

	Radius reply received by freeradius

	called_station_id

	Called Station ID

	calling_station_id

	Calling Station ID

(*): the password is stored only on unsuccessful authorizations.

Returns an empty response body in order to instruct
FreeRADIUS to avoid processing the response body.

Accounting

/api/v1/freeradius/accounting/

GET

Returns a list of accounting objects

GET /api/v1/freeradius/accounting/

[
 {
 "called_station_id": "00-27-22-F3-FA-F1:hostname",
 "nas_port_type": "Async",
 "groupname": null,
 "id": 1,
 "realm": "",
 "terminate_cause": "User_Request",
 "nas_ip_address": "172.16.64.91",
 "authentication": "RADIUS",
 "stop_time": null,
 "nas_port_id": "1",
 "service_type": "Login-User",
 "username": "admin",
 "update_time": null,
 "connection_info_stop": null,
 "start_time": "2018-03-10T14:44:17.234035+01:00",
 "output_octets": 1513075509,
 "calling_station_id": "5c:7d:c1:72:a7:3b",
 "input_octets": 9900909,
 "interval": null,
 "session_time": 261,
 "session_id": "35000006",
 "connection_info_start": null,
 "framed_protocol": "test",
 "framed_ip_address": "127.0.0.1",
 "unique_id": "75058e50"
 }
]

POST

Add or update accounting information (start, interim-update, stop);
does not return any JSON response so that freeradius will avoid
processing the response without generating warnings

	Param

	Description

	session_id

	Session ID

	unique_id

	Accounting unique ID

	username

	Username

	groupname

	Group name

	realm

	Realm

	nas_ip_address

	NAS IP address

	nas_port_id

	NAS port ID

	nas_port_type

	NAS port type

	start_time

	Start time

	update_time

	Update time

	stop_time

	Stop time

	interval

	Interval

	session_time

	Session Time

	authentication

	Authentication

	connection_info_start

	Connection Info Start

	connection_info_stop

	Connection Info Stop

	input_octets

	Input Octets

	output_octets

	Output Octets

	called_station_id

	Called station ID

	calling_station_id

	Calling station ID

	terminate_cause

	Termination Cause

	service_type

	Service Type

	framed_protocol

	Framed protocol

	framed_ip_address

	framed IP address

Pagination

Pagination is provided using a Link header pagination. Check here for more information about
traversing with pagination [https://developer.github.com/v3/guides/traversing-with-pagination/].

{

 link: <http://testserver/api/v1/freeradius/accounting/?page=2&page_size=1>; rel=\"next\",
 <http://testserver/api/v1/freeradius/accounting/?page=3&page_size=1>; rel=\"last\"

}

Note

Default page size is 10, which can be overridden using
the page_size parameter.

Filters

The JSON objects returned using the GET endpoint can be filtered/queried using specific parameters.

	Filter Parameters

	Description

	username

	Username

	called_station_id

	Called Station ID

	calling_station_id

	Calling Station ID

	start_time

	Start time (greater or equal to)

	stop_time

	Stop time (less or equal to)

	is_open

	If stop_time is null

User API Endpoints

These API endpoints are designed to be used by users
(eg: creating an account, changing their password,
obtaining access tokens, validating their phone number, etc.).

Note

The API endpoints described below do not require the
Organization API Token
described in the beginning of this document.

Some endpoints require the sending of the user API access
token sent in the form of a “Bearer Token”, example:

curl -H "Authorization: Bearer <user-token>" \
 'http://localhost:8000/api/v1/radius/organization/default/account/session/'

List of Endpoints

User Registration

Important

This endpoint is enabled by default but can be disabled either
via a global setting or from the admin interface.

/api/v1/radius/organization/<organization-slug>/account/

Responds only to POST.

Parameters:

	Param

	Description

	username

	string

	phone_number

	string (*)

	email

	string

	password1

	string

	password2

	string

	first_name

	string (**)

	last_name

	string (**)

	birth_date

	string (**)

	location

	string (**)

	method

	string (***)

(*) phone_number is required only when the organization has enabled
SMS verification in its “Organization RADIUS Settings”.

(**) first_name, last_name, birth_date and location
are optional fields which are disabled by default to make the registration
simple, but can be enabled through configuration.

(**) method must be one of the available
registration/verification methods;
if identity verification is disabled for a particular org, an empty string
will be acceptable.

Registering to Multiple Organizations

An HTTP 409 response will be returned if an existing user tries to register
on a URL of a different organization (because the account already exists).
The response will contain a list of organizations with which the user has already
registered to the system which may be shown to the user in the UI. E.g.:

{
 "details": "A user like the one being registered already exists.",
 "organizations":[
 {"slug":"default","name":"default"}
]
}

The existing user can register with a new organization using the
login endpoint. The user will also get
membership of the new organization only if the organization has
user registration enabled.

Reset password

This is the classic “password forgotten recovery feature” which
sends a reset password token to the email of the user.

/api/v1/radius/organization/<organization-slug>/account/password/reset/

Responds only to POST.

Parameters:

	Param

	Description

	input

	string that can be an email, phone_number or username.

Confirm reset password

Allows users to confirm their reset password after having it requested
via the Reset password endpoint.

/api/v1/radius/organization/<organization-slug>/account/password/reset/confirm/

Responds only to POST.

Parameters:

	Param

	Description

	new_password1

	string

	new_password2

	string

	uid

	string

	token

	string

Change password

Requires the user auth token (Bearer Token).

Allows users to change their password after using the
Reset password endpoint.

/api/v1/radius/organization/<organization-slug>/account/password/change/

Responds only to POST.

Parameters:

	Param

	Description

	current_password

	string

	new_password

	string

	confirm_password

	string

Login (Obtain User Auth Token)

/api/v1/radius/organization/<organization-slug>/account/token/

Responds only to POST.

Returns:

	radius_user_token: the user radius token, which can be used to authenticate
the user in the captive portal by sending it in place of the user password
(it will be passed to freeradius which in turn will send it to the
authorize API endpoint which will recognize the token as
the user passsword)

	key: the user API access token, which will be needed to authenticate the user to
eventual subsequent API requests (eg: change password)

	is_active if it’s false it means the user has been banned

	is_verified when identity verification is enabled, it indicates
whether the user has completed an indirect identity verification
process like confirming their mobile phone number

	method registration/verification method used by the user to register,
eg: mobile_phone, social_login, etc.

	username

	email

	phone_number

	first_name

	last_name

	birth_date

	location

If the user account is inactive or unverified the endpoint will send the data
anyway but using the HTTP status code 401, this way consumers can recognize
these users and trigger the appropriate response needed (eg: reject them
or initiate account verification).

If an existing user account tries to authenticate to an organization of which
they’re not member of, then they would be automatically added as members
(if registration is enabled for that org). Please refer to
“Registering to Multiple Organizations”.

This endpoint updates the user language preference field according
to the Accept-Language HTTP header.

Parameters:

	Param

	Description

	username

	string

	password

	string

Validate user auth token

Used to check whether the auth token of a user is valid or not.

Return also the radius user token and username in the response.

/api/v1/radius/organization/<organization-slug>/account/token/validate/

Responds only to POST.

Parameters:

	Param

	Description

	token

	the rest auth token to validate

The user information is returned in the response (similarly to
Obtain User Auth Token),
along with the following additional parameter:

	response_code: string indicating whether the result is successful or not,
to be used for translation.

This endpoint updates the user language preference field according
to the Accept-Language HTTP header.

User Radius Sessions

Requires the user auth token (Bearer Token).

Returns the radius sessions of the logged-in user and the organization specified
in the URL.

/api/v1/radius/organization/<organization-slug>/account/session/

Responds only to GET.

User Radius Usage

Requires the user auth token (Bearer Token).

Returns the radius usage of the logged-in user and the organization specified
in the URL.

It executes the relevant RADIUS counters and returns information that
shows how much time and/or traffic the user has consumed.

/api/v1/radius/organization/<organization-slug>/account/usage/

Responds only to GET.

Create SMS token

Note

This API endpoint will work only if the organization has enabled
SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, sends a code via SMS to the phone number of the user.

/api/v1/radius/organization/<organization-slug>/account/phone/token/

Responds only to POST.

No parameters required.

Get active SMS token status

Note

This API endpoint will work only if the organization has enabled
SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, allows checking whether an active SMS token was
already requested for the mobile phone number of the logged in account.

/api/v1/radius/organization/<organization-slug>/account/phone/token/active/

Responds only to GET.

No parameters required.

Verify/Validate SMS token

Note

This API endpoint will work only if the organization has enabled
SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, allows users to validate the code they receive via SMS.

/api/v1/radius/organization/<organization-slug>/account/phone/verify/

Responds only to POST.

Parameters:

	Param

	Description

	code

	string

Change phone number

Note

This API endpoint will work only if the organization has enabled
SMS verification.

Requires the user auth token (Bearer Token).

Allows users to change their phone number,
will flag the user as inactive and send them a verification code via SMS.
The phone number of the user is updated only after this verification code
has been validated.

/api/v1/radius/organization/<organization-slug>/account/phone/change/

Responds only to POST.

Parameters:

	Param

	Description

	phone_number

	string

Batch user creation

This API endpoint allows to use the features described in
Importing users and Generating users.

/api/v1/radius/batch/

Note

This API endpoint allows to use the features described in Importing users
and Generating users.

Responds only to POST, used to save a RadiusBatch instance.

It is possible to generate the users of the RadiusBatch with two different strategies: csv or prefix.

The csv method needs the following parameters:

	Param

	Description

	name

	Name of the operation

	strategy

	csv

	csvfile

	file with the users

	expiration_date

	date of expiration of the users

	organization_slug

	slug of organization of the users

These others are for the prefix method:

	Param

	Description

	name

	name of the operation

	strategy

	prefix

	prefix

	prefix for the generation of users

	number_of_users

	number of users

	expiration_date

	date of expiration of the users

	organization_slug

	slug of organization of the users

When using this strategy, in the response you can find the field
user_credentials containing the list of users created
(example: [['username', 'password'], ['sample_user', 'BBuOb5sN']])
and the field pdf_link which can be used to download a PDF file
containing the user credentials.

Batch CSV Download

/api/v1/radius/organization/<organization-slug>/batch/<id>/csv/<filename>

Responds only to GET.

Parameters:

	Param

	Description

	slug

	string

	id

	string

	filename

	string

Signals

radius_accounting_success

Path: openwisp_radius.signals.radius_accounting_success

Arguments:

	sender : AccountingView

	accounting_data (dict): accounting information

	view: instance of AccountingView

This signal is emitted every time the accounting REST API endpoint
completes successfully, just before the response is returned.

The view argument can also be used to access the request
object i.e. view.request.

Extending openwisp-radius

One of the core values of the OpenWISP project is Software Reusability [http://openwisp.io/docs/general/values.html#software-reusability-means-long-term-sustainability],
for this reason openwisp-radius provides a set of base classes
which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of openwisp-radius,
you need to perform the steps described in this section.

When in doubt, the code in the test project [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/] and
the sample app [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/sample_radius/]
will serve you as source of truth:
just replicate and adapt that code to get a basic derivative of
openwisp-radius working.

If you want to add new users fields, please follow the tutorial to extend the
openwisp-users [https://github.com/openwisp/openwisp-users/#extend-openwisp-users].
As an example, we have extended openwisp-users to sample_users app and
added a field social_security_number in the sample_users/models.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_users/models.py].

Note

Premise: if you plan on using a customized version of this module,
we suggest to start with it since the beginning, because migrating your data
from the default module to your extended version may be time consuming.

1. Initialize your custom module

The first thing you need to do is to create a new django app which will
contain your custom version of openwisp-radius.

A django app is nothing more than a
python package [https://docs.python.org/3/tutorial/modules.html#packages]
(a directory of python scripts), in the following examples we’ll call this django app
myradius, but you can name it how you want:

django-admin startapp myradius

Keep in mind that the command mentioned above must be called from a directory
which is available in your PYTHON_PATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH]
so that you can then import the result into your project.

Now you need to add myradius to INSTALLED_APPS in your settings.py,
ensuring also that openwisp_radius has been removed:

import os

INSTALLED_APPS = [
 # ... other apps ...
 # openwisp admin theme
 'openwisp_utils.admin_theme',
 # all-auth
 'django.contrib.sites',
 'allauth',
 'allauth.account',
 'allauth.socialaccount',
 # admin
 'django.contrib.admin',
 # rest framework
 'rest_framework',
 'django_filters',
 # registration
 'rest_framework.authtoken',
 'dj_rest_auth',
 'dj_rest_auth.registration',
 # social login
 'allauth.socialaccount.providers.facebook', # optional, can be removed if social login is not needed
 'allauth.socialaccount.providers.google', # optional, can be removed if social login is not needed
 # SAML login
 'djangosaml2', # optional, can be removed if SAML login is not needed
 # openwisp
 # 'myradius', <-- replace with your app-name here
 'openwisp_users',
 'private_storage',
 'drf_yasg'
]

SITE_ID = 1
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
PRIVATE_STORAGE_ROOT = os.path.join(MEDIA_ROOT, 'private')

AUTHENTICATION_BACKENDS = (
 'openwisp_users.backends.UsersAuthenticationBackend',
 'openwisp_radius.saml.backends.OpenwispRadiusSaml2Backend', # optional, can be removed if SAML login is not needed
)

Important

Remember to include your radius app’s name before proceeding.

Note

For more information about how to work with django projects and django apps, please refer
to the django documentation [https://docs.djangoproject.com/en/dev/intro/tutorial01/].

2. Install openwisp-radius

Install (and add to the requirement of your project) openwisp-radius:

pip install openwisp-radius

Note

Use pip install openwisp-radius[saml] if you intend to use
Single Sign-On (SAML) feature.

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ('openwisp_radius',)

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to
STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
 'openwisp_utils.staticfiles.DependencyFinder',
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES
in your settings.py, but ensure it comes before
django.template.loaders.app_directories.Loader:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'OPTIONS': {
 'loaders': [
 'django.template.loaders.filesystem.Loader',
 'openwisp_utils.loaders.DependencyLoader',
 'django.template.loaders.app_directories.Loader',
],
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 }
]

6. Inherit the AppConfig class

Please refer to the following files in the sample app of the test project:

	sample_radius/__init__.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/__init__.py]

	sample_radius/apps.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/apps.py]

You have to replicate and adapt that code in your project.

Note

For more information regarding the concept of AppConfig please refer to
the “Applications” section in the django documentation [https://docs.djangoproject.com/en/dev/ref/applications/].

7. Create your custom models

For the purpose of showing an example, we added a simple details field to the
models of the sample app in the test project [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/models.py].

You can add fields in a similar way in your models.py file.

Note

For doubts regarding how to use, extend or develop models please refer to the
“Models” section in the django documentation [https://docs.djangoproject.com/en/dev/topics/db/models/].

8. Add swapper configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
OPENWISP_RADIUS_RADIUSREPLY_MODEL = 'myradius.RadiusReply'
OPENWISP_RADIUS_RADIUSGROUPREPLY_MODEL = 'myradius.RadiusGroupReply'
OPENWISP_RADIUS_RADIUSCHECK_MODEL = 'myradius.RadiusCheck'
OPENWISP_RADIUS_RADIUSGROUPCHECK_MODEL = 'myradius.RadiusGroupCheck'
OPENWISP_RADIUS_RADIUSACCOUNTING_MODEL = 'myradius.RadiusAccounting'
OPENWISP_RADIUS_NAS_MODEL = 'myradius.Nas'
OPENWISP_RADIUS_RADIUSUSERGROUP_MODEL = 'myradius.RadiusUserGroup'
OPENWISP_RADIUS_RADIUSPOSTAUTH_MODEL = 'myradius.RadiusPostAuth'
OPENWISP_RADIUS_RADIUSBATCH_MODEL = 'myradius.RadiusBatch'
OPENWISP_RADIUS_RADIUSGROUP_MODEL = 'myradius.RadiusGroup'
OPENWISP_RADIUS_RADIUSTOKEN_MODEL = 'myradius.RadiusToken'
OPENWISP_RADIUS_PHONETOKEN_MODEL = 'myradius.PhoneToken'
OPENWISP_RADIUS_ORGANIZATIONRADIUSSETTINGS_MODEL = 'myradius.OrganizationRadiusSettings'
OPENWISP_RADIUS_REGISTEREDUSER_MODEL = 'myradius.RegisteredUser'

You will need to change AUTH_USER_MODEL if you are extending openwisp_users
AUTH_USER_MODEL = 'openwisp_users.User'

Substitute myradius with the name you chose in step 1.

9. Create database migrations

Copy the migration files from the sample_radius’s migration folder [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/migrations/].

Now, create database migrations as per your custom application’s requirements:

./manage.py makemigrations

If you are starting with a fresh database, you can apply the migrations:

./manage.py migrate

However, if you want migrate an existing freeradius database please read the guide in the setup.

Note

For more information, refer to the
“Migrations” section in the django documentation [https://docs.djangoproject.com/en/dev/topics/migrations/].

10. Create the admin

Refer to the admin.py file of the sample app [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/admin.py].

To introduce changes to the admin, you can do it in two main ways which are described below.

Note

For more information regarding how the django admin works, or how it can be customized, please refer to
“The django admin site” section in the django documentation [https://docs.djangoproject.com/en/dev/ref/contrib/admin/].

1. Monkey patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_radius.admin import (
 RadiusCheckAdmin,
 RadiusReplyAdmin,
 RadiusAccountingAdmin,
 NasAdmin,
 RadiusGroupAdmin,
 RadiusUserGroupAdmin,
 RadiusGroupCheckAdmin,
 RadiusGroupReplyAdmin,
 RadiusPostAuthAdmin,
 RadiusBatchAdmin,
)
NasAdmin.fields += ['example_field'] <-- Monkey patching changes example

2. Inheriting admin classes

If you need to introduce significant changes and/or you don’t want to resort to
monkey patching, you can proceed as follows:

from django.contrib import admin
from openwisp_radius.admin import (
 RadiusCheckAdmin as BaseRadiusCheckAdmin,
 RadiusReplyAdmin as BaseRadiusReplyAdmin,
 RadiusAccountingAdmin as BaseRadiusAccountingAdmin,
 NasAdmin as BaseNasAdmin,
 RadiusGroupAdmin as BaseRadiusGroupAdmin,
 RadiusUserGroupAdmin as BaseRadiusUserGroupAdmin,
 RadiusGroupCheckAdmin as BaseRadiusGroupCheckAdmin,
 RadiusGroupReplyAdmin as BaseRadiusGroupReplyAdmin,
 RadiusPostAuthAdmin as BaseRadiusPostAuthAdmin,
 RadiusBatchAdmin as BaseRadiusBatchAdmin,
)
from swapper import load_model
Nas = load_model('openwisp_radius', 'Nas')
RadiusAccounting = load_model('openwisp_radius', 'RadiusAccounting')
RadiusBatch = load_model('openwisp_radius', 'RadiusBatch')
RadiusCheck = load_model('openwisp_radius', 'RadiusCheck')
RadiusGroup = load_model('openwisp_radius', 'RadiusGroup')
RadiusPostAuth = load_model('openwisp_radius', 'RadiusPostAuth')
RadiusReply = load_model('openwisp_radius', 'RadiusReply')
PhoneToken = load_model('openwisp_radius', 'PhoneToken')
RadiusGroupCheck = load_model('openwisp_radius', 'RadiusGroupCheck')
RadiusGroupReply = load_model('openwisp_radius', 'RadiusGroupReply')
RadiusUserGroup = load_model('openwisp_radius', 'RadiusUserGroup')
OrganizationRadiusSettings = load_model('openwisp_radius', 'OrganizationRadiusSettings')
User = get_user_model()

admin.site.unregister(RadiusCheck)
admin.site.unregister(RadiusReply)
admin.site.unregister(RadiusAccounting)
admin.site.unregister(Nas)
admin.site.unregister(RadiusGroup)
admin.site.unregister(RadiusUserGroup)
admin.site.unregister(RadiusGroupCheck)
admin.site.unregister(RadiusGroupReply)
admin.site.unregister(RadiusPostAuth)
admin.site.unregister(RadiusBatch)

@admin.register(RadiusCheck)
class RadiusCheckAdmin(BaseRadiusCheckAdmin):
 # add your changes here

@admin.register(RadiusReply)
class RadiusReplyAdmin(BaseRadiusReplyAdmin):
 # add your changes here

@admin.register(RadiusAccounting)
class RadiusAccountingAdmin(BaseRadiusAccountingAdmin):
 # add your changes here

@admin.register(Nas)
class NasAdmin(BaseNasAdmin):
 # add your changes here

@admin.register(RadiusGroup)
class RadiusGroupAdmin(BaseRadiusGroupAdmin):
 # add your changes here

@admin.register(RadiusUserGroup)
class RadiusUserGroupAdmin(BaseRadiusUserGroupAdmin):
 # add your changes here

@admin.register(RadiusGroupCheck)
class RadiusGroupCheckAdmin(BaseRadiusGroupCheckAdmin):
 # add your changes here

@admin.register(RadiusGroupReply)
class RadiusGroupReplyAdmin(BaseRadiusGroupReplyAdmin):
 # add your changes here

@admin.register(RadiusPostAuth)
class RadiusPostAuthAdmin(BaseRadiusPostAuthAdmin):
 # add your changes here

@admin.register(RadiusBatch)
class RadiusBatchAdmin(BaseRadiusBatchAdmin):
 # add your changes here

11. Setup Freeradius API Allowed Hosts

Add allowed freeradius hosts in settings.py:

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS = ['127.0.0.1']

Note

Read more about freeradius allowed hosts in settings page.

12. Setup Periodic tasks

Some periodic commands are required in production environments to enable certain
features and facilitate database cleanup:

	You need to create a celery configuration file as it’s created in example file [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/celery.py].

2. In the settings.py, configure the CELERY_BEAT_SCHEDULE [https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/settings.py#L141]. Some celery tasks take an argument, for instance
365 is given here for delete_old_radacct in the example settings.
These arguments are passed to their respective management commands. More information about these parameters can be
found at the management commands page.

	Add the following in your settings.py file:

CELERY_IMPORTS = ('openwisp_monitoring.device.tasks',)

Note

Celery tasks do not start with django server and need to be
started seperately, please read about running celery and
celery-beat tasks.

13. Create root URL configuration

The root url.py file should have the following paths (please read the comments):

from openwisp_radius.urls import get_urls
Only imported when views are extended.
from myradius.api.views import views as api_views
from myradius.social.views import views as social_views
from myradius.saml.views import views as saml_views

urlpatterns = [
 # ... other urls in your project ...
 path('admin/', admin.site.urls),
 # openwisp-radius urls
 path('accounts/', include('openwisp_users.accounts.urls')),
 path('api/v1/', include('openwisp_utils.api.urls')),
 # Use only when extending views (dicussed below)
 # path('', include((get_urls(api_views, social_views, saml_views), 'radius'), namespace='radius')),
 path('', include('openwisp_radius.urls', namespace='radius')), # Remove when extending views
]

Note

For more information about URL configuration in django, please refer to the
“URL dispatcher” section in the django documentation [https://docs.djangoproject.com/en/dev/topics/http/urls/].

14. Import the automated tests

When developing a custom application based on this module, it’s a good
idea to import and run the base tests too, so that you can be sure the changes
you’re introducing are not breaking some of the existing features of openwisp-radius.

In case you need to add breaking changes, you can overwrite the tests defined
in the base classes to test your own behavior.

See the tests of the sample app [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/tests.py]
to find out how to do this.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel myradius

Substitute myradius with the name you chose in step 1.

Other base classes that can be inherited and extended

The following steps are not required and are intended for more advanced customization.

1. Extending the API Views

The API view classes can be extended into other django applications as well. Note
that it is not required for extending openwisp-radius to your app and this change
is required only if you plan to make changes to the API views.

Create a view file as done in API views.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/api/views.py].

Remember to use these views in root URL configurations in point 11.
If you want only extend the API views and not social views, you can use
get_urls(api_views, None) to get social_views from openwisp_radius.

Note

For more information about django views, please refer to the
views section in the django documentation [https://docs.djangoproject.com/en/dev/topics/http/views/].

2. Extending the Social Views

The social view classes can be extended into other django applications as well. Note
that it is not required for extending openwisp-radius to your app and this change
is required only if you plan to make changes to the social views.

Create a view file as done in social views.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/social/views.py].

Remember to use these views in root URL configurations in point 11.
If you want only extend the API views and not social views, you can use
get_urls(api_views, None) to get social_views from openwisp_radius.

3. Extending the SAML Views

The SAML view classes can be extended into other django applications as well. Note
that it is not required for extending openwisp-radius to your app and this change
is required only if you plan to make changes to the SAML views.

Create a view file as done in saml views.py [https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/saml/views.py].

Remember to use these views in root URL configurations in point 11.
If you want only extend the API views and social view but not SAML views, you can use
get_urls(api_views, social_views, None) to get saml_views from openwisp_radius.

Note

For more information about django views, please refer to the
views section in the django documentation [https://docs.djangoproject.com/en/dev/topics/http/views/].

Captive portal mock views

The development environment of openwisp-radius provides two URLs that mock
the behavior of a captive portal, these URLs can be used when testing
frontend applications like
openwisp-wifi-login-pages [https://github.com/openwisp/openwisp-wifi-login-pages]
during development.

Note

These views are meant to be used just for development and testing.

Captive Portal Login Mock View

	URL: http://localhost:8000/captive-portal-mock/login/.

	POST fields: auth_pass or password.

This view looks for auth_pass or password in the POST request data,
and if it finds anything will try to look for any RadiusToken instance
having its key equal to this value, and if it does find one, it makes a
POST request to accouting view to create the radius session related to
the user to which the radius token belongs, provided there’s no other open
session for the same user.

Captive Portal Logout Mock View

	URL: http://localhost:8000/captive-portal-mock/logout/.

	POST fields: logout_id.

This view looks for an entry in the radacct table with session_id
equals to what is passed in the logout_id POST field and if it finds
one, it makes a POST request to accounting view to flags the session
as terminated by passing User-Request as termination cause.

Support

The OpenWISP community is very active and offers best effort support through the official
OpenWISP Support Channels [https://openwisp.org/support.html].

 Commercial support is also available, for more information you can reach us at:

 support@openwisp.io.

Contributing

Thank you for taking the time to contribute to openwisp-radius, please read the
guide for contributing to openwisp repositories [http://openwisp.io/docs/developer/contributing.html].

Follow these guidelines to speed up the process.

Table of Contents:

	Contributing

	Setup

	Ensure test coverage does not decrease

	Follow style conventions

	Update the documentation

	Send pull request

Note

In order to have your contribution accepted faster, please read the
OpenWISP contributing guidelines [http://openwisp.io/docs/developer/contributing.html] and make sure to follow its guidelines.

Setup

Once you have chosen an issue to work on, setup your machine for development.

Ensure test coverage does not decrease

First of all, install the test requirements:

workon radius # activate virtualenv
pip install --no-cache-dir -U -r requirements-test.txt

When you introduce changes, ensure test coverage is not decreased with:

coverage run --source=openwisp_radius runtests.py

Follow style conventions

First of all, install the test requirements:

workon radius # activate virtualenv
pip install --no-cache-dir -U -r requirements-test.txt
npm install -g jslint

Before committing your work check that your changes are not breaking
our coding style conventions [https://openwisp.io/docs/developer/contributing.html#coding-style-conventions]:

reformat the code according to the conventions
openwisp-qa-format
run QA checks
./run-qa-checks

For more information, please see:

	OpenWISP Coding Style Conventions [https://openwisp.io/docs/developer/contributing.html#coding-style-conventions]

Update the documentation

If you introduce new features or change existing documented behavior,
please remember to update the documentation!

The documentation is located in the /docs directory
of the repository.

To do work on the docs, proceed with the following steps:

workon radius # activate virtualenv
pip install sphinx
cd docs
make html

Send pull request

Now is time to push your changes to github and open a pull request [https://github.com/openwisp/openwisp-radius/pulls]!

Motivations and Goals

In this page we explain the goals of this project and the motivations
that led us on this path.

Motivations

The old version of OpenWISP (which we call OpenWISP 1) had a freeradius module
which provided several interesting features:

	user registration

	account verification with several methods

	user management

	password reset

	basic general statistics

	basic user account page with user’s statistics

But it also had important problems:

	it was not written with automated testing in mind, so there was a lot of code which
the maintainers didn’t want to touch because of fear of breaking existing features

	it was not written with an international user-base in mind, it contained a great
deal of code which was specific to a single country (Italy)

	it was hard to extend, even small changes required changing its core code

	the user management code was implemented in a different way compared to
other openwisp1 modules, which added a lot of maintenance overhead

	it used outdated dependencies which over time became vulnerable and were hard to replace

	it did not perform hashing of user passwords

	the documentation did not explain how to properly install and configure the software

Similar problems were affecting other modules of OpenWISP 1, that’s why
over time we got convinced the best thing was to start fresh using best practices
since the start.

Project goals

The main aim of this project is to offer a web application and documentation
that helps people from all over the world to implement a wifi network
that can use freeradius to authenticate its users, either via captive portal
authentication or WPA2 enterprise, BUT this doesn’t mean we want to
lock the software to this use case: we want to keep the software generic enough
so it can be useful to implement other use cases that are related to
networking connectivity and network management; Just keep in mind our main
aim if you plan to contribute to openwisp-radius please.

Other goals are listed below:

	replace the user management system of OpenWISP 1 by providing a similar feature set

	provide a web interface to manage a freeradius database

	provide abstract models and admin classes that can be imported, extended and reused in third party apps

	provide ways to extend the logic of openwisp-radius without changing its core

	ensure the code is written with an international audience in mind

	maintain a very good automated test suite

	reuse the django user management logic which is very robust and stable

	ensure passwords are hashed with strong algorithms and freeradius can
authorize/authenticate using these hashes (that’s why we recommend using the
rlm_rest freeradius module with the REST API of openwisp-radius)

	integrate openwisp-radius with the rest of the openwisp2 ecosystem

	provide good documentation on how to install the project, configure it with
freeradius and use its most important features

Change log

Version 1.1.0 [Unreleased]

Unreleased (Work in progress)

Version 1.0.2 [2022-12-05]

Bugfixes

	Made private storage backend configurable

	Updated API views to use filterset_class instead of filter_class
(required by django-filter==22.1)

	Fixed organization cache bug in SAML ACS view: A forceful update of
the user’s organization cache is done before performing post-login
operations to avoid issues occurring due to outdated cache.

	Added missing Furlan translation for sesame link validity

	Use storage backend method for deleting RadiusBatch.csvfile:
The previous implementation used the “os” module for deleting resisdual
csv files. This causes issues when the project uses a file storage backend
other than based on file system.

	Added error handling in RadiusBatch admin change view: Accessing admin change
view of a non-existent RadiusBatch object resulted in Server Error 500
because the DoesNotExist conditioned was not handled.

	Load image using static() in RegisteredUserInline.get_is_verified

	Use path URL kwarg in “serve_private_file” URL pattern

	Honor DISPOSABLE_RADIUS_USER_TOKEN in accounting stop API view:
The accounting stop REST API operation was not taking into
account the OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN
setting when disabling the auth capability of the radius token.

Version 1.0.1 [2022-05-10]

Bugfixes

	Fixed a bug in the organization radius settings form which was causing it
to not display some default values correctly

	Fixed a bug in allowed mobile prefix implementation:
the implementation was joining the globally allowed prefixes
and the prefixes allowed at org level, with the result
that disabling a prefix at org level was not possible

	Called-station-ID command: log with warning instead of warn or error:
- warn > warning (warn is deprecated)
- use warning instead of errors for more temporary connection issues cases

Version 1.0.0 [2022-04-18]

Features

	Allowed to login via API with email or phone number

	Allowed freeradius authorize with email or phone number

	Allowed the usage of subnets in OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-freeradius-allowed-hosts]

	Made the fields containing personal data of users which are exposed in the registration API
configurable (allowed, mandatory, disabled) via the
OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS setting or the admin interface [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-optional-registration-fields]

	Allow to disable registration API via the
OPENWISP_RADIUS_REGISTRATION_API_ENABLED setting
or the admin interface [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-registration-api-enabled]

	Added throttling of API requests [https://openwisp-radius.readthedocs.io/en/latest/user/api.html#api-throttling]

	Added OPENWISP_RADIUS_API_BASEURL setting [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-api-baseurl]

	Add identity verification feature, configurable via the
OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION or via admin interface [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-needs-identity-verification]

	Added utilities for implementing
new registration and identity verification methods [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#adding-support-for-more-registration-verification-methods]

	Added captive portal mock views [https://openwisp-radius.readthedocs.io/en/latest/developer/captive_portal_mock.html]
to ease development and debugging

	Add possibility to filter users by registration method in the admin interface

	Added SAML registration method to implement captive portal authentication
via Single Sign On (SSO) [https://openwisp-radius.readthedocs.io/en/latest/user/saml.html]

	Added management command and celery task to
delete unverified users [https://openwisp-radius.readthedocs.io/en/latest/user/management_commands.html#delete-unverified-users]

	Added translations of user facing API responses in Italian, German, Slovenian and Furlan

	Added Convert RADIUS accounting CALLED-STATION-ID feature [https://openwisp-radius.readthedocs.io/en/latest/user/management_commands.html#convert-called-station-id],
celery task and management command,
with the possibility of triggering it on accounting creation
(see OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-convert-called-station-on-create])

	Added an equivalent of the FreeRADIUS sqlcounter feature to the REST API [https://openwisp-radius.readthedocs.io/en/latest/user/enforcing_limits.html#how-limits-are-enforced-counters]

	Added emission of django signal to FreeRADIUS accounting view:
radius_accounting_success [https://openwisp-radius.readthedocs.io/en/latest/developer/signals.html#radius-accounting-success]

	Added possibility to send email to the user an they start
a new radius accounting session

	Added organization level settings and related admin interface functionality
to enable/disable SAML and social login:

	OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-saml-registration-enabled]

	OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-social-registration-enabled]

	Added setting to avoid updating username from SAML:
OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-saml-updates-pre-existing-username]

Changes

Backward incompatible changes

	Updated prefixes of REST API URLs:

	API endpoints dedicated to FreeRADIUS have moved to /api/v1/freeradius/

	the rest of the API endpoints have moved to /api/v1/radius/

	Allowed username and phone_number in password reset API,
the endpoint now accepts the “input” parameter instead of “email”

	Removed customizations for checks and password hashing because
they are unmaintained, any user needing these customizations is
advised to implement them as a third party app

	Improved REST API to change password:
inherited PasswordChangeView of openwisp-users to add support for
the current-password field in password change view

Dependencies

	Added support for Django 3.2 and 4.0

	Dropped support for Django 2.2

	Upgraded celery to 5.2.x

	Updated and tested Django REST Framework to 3.13.0

	Added support for Python 3.8, 3.9

	Removed support for Python 3.6

Other changes

	Moved AccountingView to freeradius endpoints

	Relaxed default values for the
SMS token settings [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#sms-token-related-settings]

	Switched to new navigation menu and new OpenWISP theme

	Allowed users to sign up to multiple organizations

	Update username when phone number is changed if username is equal to the phone number

	Update stop time and termination to None if status_type is Interim-Update

	Send password reset emails using HTML theme:
leverage the new openwisp-utils send_email function [https://github.com/openwisp/openwisp-utils#openwisp-utils-admin-theme-email-send-email]
to send an HTML version
of the reset password email based on the configurable email HTML theme of OpenWISP

	Save the user preferred language in obtain and validate token views

	Added validation check to prevent invalid username in batch user creation

	Allowed to set the
Password Reset URL setting [https://openwisp-radius.readthedocs.io/en/latest/user/settings.html#openwisp-radius-password-reset-urls]
via the admin interface

	Added soft limits to celery tasks for background operations

	Generalized the implementation of the fallback model fields which allow
overriding general settings for each organization

Bugfixes

	Fixed login template of openwisp-admin-theme

	Fixed swagger API docs collision with openwisp-users

	Ensured each user can be member of a group only once

	Radius check and reply should check for organization membership

	ValidateAuthTokenView: show phone_number as null if None

	Freeradius API: properly handle interaction between multiple orgs:
an user trying to authorize using the authorization data of an
org for which they are not member of must be rejected

	Fixed radius user group creation with multiple orgs

	Added validation of phone number uniqueness in the registration API

	Fixed issues with translatable strings:

	we don’t translate log lines anymore because these won’t be shown
to end users

	gettext does not work with fstrings,
therefore the use of str.format() has been restored

	improved some user facing strings

	Fixed Accounting-On and Accounting-Of accounting requests with blank usernames

	Delete any cached radius token key on phone number change

	Fixed handling of interim-updates for closed sessions:
added handling of “Interim-Updates” for RadiusAccounting sessions
that are closed by OpenWISP when user logs into another organization

	Flag user as verified in batch user creation

	Added validation which prevents the creation of duplicated
check/reply attributes

Version 0.2.1 [2020-12-14]

Changes

	Increased openwisp-users and openwisp-utils versions to be
consistent with the OpenWISP 2020-12 release [https://github.com/openwisp/ansible-openwisp2/releases/tag/0.12.0]

	Increased dj-rest-auth to 2.1.2 and weasyprint to 52

Version 0.2.0 [2020-12-11]

Features

	Changing the phone number via the API now keeps track of previous phone numbers
used by the user to comply with ISP legal requirements

Changes

	Obtain Auth Token View API endpoint: added is_active attribute to response

	Obtain Auth Token View API endpoint: if the user attempting to authenticate
is inactive, the API will return HTTP status code 401 along with the auth token
and is_active attribute

	Validate Auth Token View API endpoint: added is_active, phone_number
and email to response data

	When changing phone number, user is flagged as inactive only after
the phone token is created and sent successfully

	All API endpoints related to phone token and SMS sending are now
disabled (return 403 HTTP response) if SMS verification not enabled
at organization level

Bugfixes

	Removed static() call from media assets

	Fixed password reset for inactive users

	Fixed default password reset URL value and added docs

	Documentation: fixed several broken internal links

Version 0.1.0 [2020-09-10]

	administration web interface

	support for freeradius 3.0

	multi-tenancy

	REST API

	integration with rlm_rest module of freeradius

	possibility of registering new users via API

	social login support

	mobile phone verification via SMS tokens

	possibility to import users from CSV files

	possibility to generate users for events

	management commands and/or celery tasks to perform
clean up operations and periodic tasks

	possibility to extend the base classes and swap models
to add custom functionality without changing the core code

Index

 _images/optional_fields.png
First name:

Last name:

Birth date:

Location:

Disabled v
Whether this field should be disabled, allowed or mandatory in the user registration API.

Disabled v

Whether this field should be disabled, allowed or mandatory in the user registration API.

Disabled v
Whether this field should be disabled, allowed or mandatory in the user registration API.

Disabled v

Whether this field should be disabled, allowed or mandatory in the user registration API.

_images/org_uuid.png
Ope

HOME

USERS & ORGANIZATIONS

%

Users

Organizations

Organization Owners

R

Groups & Permissions

@ RADIUS

>

Emai

URL:

Created:

Modified:

admin@openwisp.org

https://openwisp.org

Obdcb0a6-51ed-4acc-8f3e-351b1029¢cTa

13 Apr 2022, 9:46 am.

13 Apr 2022, 9:46 am.

ORGANIZATION OWNER

+ Add another Organization owner

2 ADMIN

_images/organization_coa_enabled.png
'ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Token: NNg3ppMwpyiUBGSnhy5qPezAjwLAOFM

Freeradius allowed
hosts:

127.00.1

4
Comma separated list of IP addresses allowed to access freeradius AP

CoA Enabled: Default (Disabled) v/

Whether RADIUS Change Of Authoization (CoA) is enabled

Registration enabled: Default (Enabled) v

Whether the registration API endpoint should be enabled or not

_images/organization_registration_setting.png
'ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Token: NNg3ppMwpyiUBGSnhy5qPezAwLAOFM
Freeradius allowed 127,001
hosts:

4
Comma separated list of IP addresses allowed to access freeradius AP

Registration enabled: Enabled M

Whether the registration API endpoint should be enabled or not

SAML registration Default (Disabled) v
enabled:

Whether the registration using SAML should be enabled or not

Social registration Default (Disabled) v
enabled:

Whether the registration using social applications should be enabled or not

_images/drf_api_interface.png
Ope

Batch

GET /api/vi/radius/batch/

HTTP 405 Method Not Allowed

Allow: POST, OPTIONS

Content-Type: application/json

Vary: Accept

{
"detail’

organization

Prefix

Csviile

Number of users.

Strategy

Name.

Expiration date

tethod \"

ET\" not allowed."

Raw data

default

Slug of the organization for creating radius batch.

Prefix for creating usernames. Only required when “prefix” strategy is used.

| Browse... | No file selected.

SV file for extracting user's information. Only required when ‘csv’ strategy is used.

Number of users to be generated. Only required when ‘prefix’ strategy is used.”

Generate from prefix

Import users from a CSV or generate using a prefix

A unique batch name

dd/mm/yyyy

If et blank users will never expire

admin

HTML form

_images/freeradius_allowed_hosts.png
'ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Token: KGoZpOBBHL2UyhLeMEXdXgjeYRmyCefZ
Freeradius allowed 127.0.0.1,192.168.0.1,10.10.10.10
hosts:

4
Comma separated list of IP addresses allowed to access freeradius AP

O Delete

_images/download_user_credentials_button.png
Ope

HOME

USERS & ORGANIZATIONS

RADIUS

Home » Freeradius » Batch user creation operations > default
Change batch user creation (default)

Strategy: Generate from prefix

Import users from a CSV or generate using a prefix

Organization: default v| & +

CREDENTIALS

2 ADMIN

_images/mac-address-roaming.png
Registration enabled:

SAML registration
enabled:

Social registration
enabled:

MAC address roaming
enabled:

Needs identity
verification:

First name:

Default (Enabled) v

Whether the registration APl endpoint should be enabled or not

Default (Disabled) v

Whether the registration using SAML should be enabled or not

Default (Disabled) v

Whether the registration using social applications should be enabled or not

Default (Disabled) v

Whether the MAC address roaming should be enabled or not.

Default (Disabled) v

Whether identity verification is required at the time of user registration

Default (Disabled) v

Whether this field should be disabled, allowed or mandatory in the user registration API

_images/organization_saml_setting.png
'ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Token: NNg3ppMwpyiUBGSnhy5qPezAwLAOFM
Freeradius allowed 127,001
hosts:

4
Comma separated list of IP addresses allowed to access freeradius AP

Registration enabled: Enabled M

Whether the registration API endpoint should be enabled or not

SAML registration Default (Disabled) v
enabled:

Whether the registration using SAML should be enabled or not

Social registration Default (Disabled) v
enabled:

Whether the registration using social applications should be enabled or not

nav.xhtml

 Table of Contents

 		
 openwisp-radius

 		
 Setup

 		
 Try the demo

 		
 Deploy it in production

 		
 Create a virtual environment

 		
 Install required system packages

 		
 Install stable version from pypi

 		
 Install development version

 		
 Setup (integrate in an existing django project)

 		
 Migrating an existing freeradius database

 		
 Automated periodic tasks

 		
 1. Celery-beat (Recommended Method)

 		
 2. Crontab (Legacy Method)

 		
 Installing for development

 		
 Celery Usage

 		
 Troubleshooting

 		
 Freeradius Setup for Captive Portal authentication

 		
 How to install freeradius 3

 		
 Configuring Freeradius 3

 		
 Enable the configured modules

 		
 Configure the REST module

 		
 Configure the SQL module

 		
 Configure the site

 		
 Restart freeradius to make the configuration effective

 		
 Reconfigure the development environment using PostgreSQL

 		
 Using Radius Checks for Authorization Information

 		
 Configuration

 		
 Debugging

 		
 Start freeradius in debug mode

 		
 Testing authentication and authorization

 		
 Testing accounting

 		
 Customizing your configuration

 		
 Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication

 		
 Prerequisites

 		
 Freeradius configuration

 		
 Configure the sites

 		
 Configure the EAP modules

 		
 Repeating the steps for more organizations

 		
 Final steps

 		
 Implementing other EAP scenarios

 		
 Available settings

 		
 Admin related settings

 		
 OPENWISP_RADIUS_EDITABLE_ACCOUNTING

 		
 OPENWISP_RADIUS_EDITABLE_POSTAUTH

 		
 OPENWISP_RADIUS_GROUPCHECK_ADMIN

 		
 OPENWISP_RADIUS_GROUPREPLY_ADMIN

 		
 OPENWISP_RADIUS_USERGROUP_ADMIN

 		
 OPENWISP_RADIUS_USER_ADMIN_RADIUSTOKEN_INLINE

 		
 Model related settings

 		
 OPENWISP_RADIUS_DEFAULT_SECRET_FORMAT

 		
 OPENWISP_RADIUS_DISABLED_SECRET_FORMATS

 		
 OPENWISP_RADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

 		
 OPENWISP_RADIUS_BATCH_DELETE_EXPIRED

 		
 OPENWISP_RADIUS_BATCH_PDF_TEMPLATE

 		
 OPENWISP_RADIUS_EXTRA_NAS_TYPES

 		
 OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS

 		
 OPENWISP_RADIUS_COA_ENABLED

 		
 `RADCLIENT_ATTRIBUTE_DICTIONARIES`

 		
 OPENWISP_RADIUS_MAX_CSV_FILE_SIZE

 		
 OPENWISP_RADIUS_PRIVATE_STORAGE_INSTANCE

 		
 OPENWISP_RADIUS_CALLED_STATION_IDS

 		
 OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE

 		
 OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT

 		
 OPENWISP_RADIUS_UNVERIFY_INACTIVE_USERS

 		
 OPENWISP_RADIUS_DELETE_INACTIVE_USERS

 		
 API and user token related settings

 		
 OPENWISP_RADIUS_API_URLCONF

 		
 OPENWISP_RADIUS_API_BASEURL

 		
 OPENWISP_RADIUS_API

 		
 OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN

 		
 OPENWISP_RADIUS_API_AUTHORIZE_REJECT

 		
 OPENWISP_RADIUS_API_ACCOUNTING_AUTO_GROUP

 		
 OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES

 		
 OPENWISP_RADIUS_ALLOW_FIXED_LINE_OR_MOBILE

 		
 OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS

 		
 OPENWISP_RADIUS_PASSWORD_RESET_URLS

 		
 OPENWISP_RADIUS_REGISTRATION_API_ENABLED

 		
 OPENWISP_RADIUS_SMS_VERIFICATION_ENABLED

 		
 OPENWISP_RADIUS_MAC_ADDR_ROAMING_ENABLED

 		
 OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION

 		
 Email related settings

 		
 OPENWISP_RADIUS_BATCH_MAIL_SUBJECT

 		
 OPENWISP_RADIUS_BATCH_MAIL_MESSAGE

 		
 OPENWISP_RADIUS_BATCH_MAIL_SENDER

 		
 Counter related settings

 		
 OPENWISP_RADIUS_COUNTERS

 		
 OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME

 		
 OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME

 		
 OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP

 		
 Social Login related settings

 		
 OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED

 		
 SAML related settings

 		
 OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED

 		
 OPENWISP_RADIUS_SAML_REGISTRATION_METHOD_LABEL

 		
 OPENWISP_RADIUS_SAML_IS_VERIFIED

 		
 OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME

 		
 SMS token related settings

 		
 SENDSMS_BACKEND

 		
 OPENWISP_RADIUS_SMS_TOKEN_DEFAULT_VALIDITY

 		
 OPENWISP_RADIUS_SMS_TOKEN_LENGTH

 		
 OPENWISP_RADIUS_SMS_TOKEN_HASH_ALGORITHM

 		
 OPENWISP_RADIUS_SMS_COOLDOWN

 		
 OPENWISP_RADIUS_SMS_TOKEN_MAX_ATTEMPTS

 		
 OPENWISP_RADIUS_SMS_TOKEN_MAX_USER_DAILY

 		
 OPENWISP_RADIUS_SMS_TOKEN_MAX_IP_DAILY

 		
 OPENWISP_RADIUS_SMS_MESSAGE_TEMPLATE

 		
 Management commands

 		
 delete_old_radacct

 		
 delete_old_postauth

 		
 cleanup_stale_radacct

 		
 deactivate_expired_users

 		
 delete_old_radiusbatch_users

 		
 delete_unverified_users

 		
 upgrade_from_django_freeradius

 		
 convert_called_station_id

 		
 Importing users

 		
 CSV Format

 		
 Imported users with hashed passwords

 		
 Importing users with clear-text passwords

 		
 Auto-generation of usernames and passwords

 		
 Using the admin interface

 		
 Management command: batch_add_users

 		
 REST API: Batch user creation

 		
 Generating users

 		
 Using the admin interface

 		
 Management command: prefix_add_users

 		
 REST API: Batch user creation

 		
 Enforcing session limits

 		
 Default groups

 		
 How limits are enforced: counters

 		
 DailyCounter

 		
 DailyTrafficCounter

 		
 MonthlyTrafficCounter

 		
 MonthlySubscriptionTrafficCounter

 		
 Database support

 		
 Django Settings

 		
 Writing custom counter classes

 		
 Registration of new users

 		
 Social Login

 		
 Setup

 		
 Configure the social account application

 		
 Captive page button example

 		
 Settings

 		
 Single Sign-On (SAML)

 		
 Setup

 		
 Configure the djangosaml2 settings

 		
 Captive page button example

 		
 Logout

 		
 Settings

 		
 FAQs

 		
 Preventing change in username of a registered user

 		
 Change of Authorization (CoA)

 		
 API Documentation

 		
 Live documentation

 		
 Browsable web interface

 		
 FreeRADIUS API Endpoints

 		
 FreeRADIUS API Authentication

 		
 API Throttling

 		
 List of Endpoints

 		
 User API Endpoints

 		
 List of Endpoints

 		
 Signals

 		
 radius_accounting_success

 		
 Extending openwisp-radius

 		
 1. Initialize your custom module

 		
 2. Install openwisp-radius

 		
 3. Add EXTENDED_APPS

 		
 4. Add openwisp_utils.staticfiles.DependencyFinder

 		
 5. Add openwisp_utils.loaders.DependencyLoader

 		
 6. Inherit the AppConfig class

 		
 7. Create your custom models

 		
 8. Add swapper configurations

 		
 9. Create database migrations

 		
 10. Create the admin

 		
 1. Monkey patching

 		
 2. Inheriting admin classes

 		
 11. Setup Freeradius API Allowed Hosts

 		
 12. Setup Periodic tasks

 		
 13. Create root URL configuration

 		
 14. Import the automated tests

 		
 Other base classes that can be inherited and extended

 		
 1. Extending the API Views

 		
 2. Extending the Social Views

 		
 3. Extending the SAML Views

 		
 Captive portal mock views

 		
 Captive Portal Login Mock View

 		
 Captive Portal Logout Mock View

 		
 Support

 		
 Contributing

 		
 Setup

 		
 Ensure test coverage does not decrease

 		
 Follow style conventions

 		
 Update the documentation

 		
 Send pull request

 		
 Motivations and Goals

 		
 Motivations

 		
 Project goals

 		
 Change log

 		
 Version 1.1.0 [Unreleased]

 		
 Version 1.0.2 [2022-12-05]

 		
 Bugfixes

 		
 Version 1.0.1 [2022-05-10]

 		
 Bugfixes

 		
 Version 1.0.0 [2022-04-18]

 		
 Features

 		
 Changes

 		
 Bugfixes

 		
 Version 0.2.1 [2020-12-14]

 		
 Changes

 		
 Version 0.2.0 [2020-12-11]

 		
 Features

 		
 Changes

 		
 Bugfixes

 		
 Version 0.1.0 [2020-09-10]

_images/add_users_prefix.gif
[

USERS & ORGANIZATIONS

RADIUS

Network Administration

FREERADIUS

Accountings

Batch user creation operations

Checks

Groups

NAS

Post auth log

Radius token

Replies

SITES

Sites

SOCIAL ACCOUNTS

Social applications

USERS AND ORGANIZATIONS

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

Recent actions

My actions

None available

2 ADMIN

_images/pdf_of_user_list.png
Username Password
samplel ygJDRWt1

sample2 Arli2tzy

_images/swagger_api.png
Ope http://127.0.0.1:8000/api/v1/docs/?format=openapi EXPLORE

OpenWISP API®

[Base URL: 127.0.0.1:8000/api/v1 1
http://127.0.0.1:8000/api/v1/docs/?format=openapi

OpenWISP REST API

Schemes
wre Django admin
Filter by tag
freeradius v
/freeradius/accounting/ freeradius_accounting_list @
/freeradius/accounting/ freeradius_accounting_create @
/freeradius/authorize/ freeradius_authorize_create @
/freeradius/postauth/ freeradius_postauth_create @
radius v
/radius/batch/ radius_batch_create @
/radius/organization/{slug}/account/ radius_organization_account_create @

_images/organization_sms_verification_setting.png
'ORGANIZATION RADIUS SETTINGS

Organization radius settings: Test

Token: PmI2uxUFvzrKISIFY9NxqN3Gnj1SAayG
Freeradius allowed 127001
hosts:

Comma separated st of IP addresses allowed to access freeradius AP|

Registration enabled: Default (Enabled) v

Whether the registration API endpoint should be enabled or not

SAML registration Default (Disabled) v
enabled:
Whether the registration using SAML should be enabled or not
Social registration Defauit (Disabled) v
enabled:
Whether the registration using social applications should be enabled or not
Needs identity Disabled .
verification:
Whether identity verification is required at the time of user registration
Sms verification: Disabled v

Whether users who sign up should be required to verify their mobile phone number via SMS

_images/add_users_csv.gif
Ope Network Administration
FREERADIUS
HOME
Accountings
USERS & ORGANIZATIONS
Batch user creation oper

® RADIUS

Checks

Groups

NAS

Post auth log

Radius token

Replies

SITES

Sites

SOCIAL ACCOUNTS

Social applications

USERS AND ORGANIZATIONS

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

+ Add

Change

Change

Change

Change

Change

Change

Change

Change

Change

Change

T

2 ADMIN

Recent actions

My actions

admin
User

+ default
Batch user creation

_images/organization_social_login_setting.png
ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Token:

Freeradius allowed
hosts:

Registration enabled:

SAML registration
enabled:

Social registration
enabled:

NNg3ppMwpyiUBGSnhy5qPezAwLAOFM

127.00.1

4
Comma separated list of IP addresses allowed to access freeradius AP

Enabled M

Whether the registration API endpoint should be enabled or not

Default (Disabled)

Whether the registration using SAML should be enabled or not

Default (Disabled)

Whether the registration using social applications should be enabled or not

_images/token.png
Ope

HOME

USERS & ORGANIZATIONS

%

Users

EcI D

Organizations

Organization Owners

R

Groups & Permissions

® RADIUS

2 ADMIN

ORGANIZATION RADIUS SETTINGS

Organization radius settings: default

Freeradius allowed
hosts:

Registration enabled:

SAML registration
enabled:

Social registration
enabled:

O Delete

KGoZp0BBHL2UyhLeMEXdXgjeYRmyCefz

127.00.1
4
Comma separated list of IP addresses allowed to access freeradius AP

Enabled v
Whether the registration API endpoint should be enabled or not

Default (Disabled) v

Whether the registration using SAML should be enabled or not

Default (Disabled) v

_static/favicon.png
¢

_static/plus.png

_static/file.png

_static/minus.png

